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Foreword 

 

This course handout of Fluid Mechanics, in accordance with the official 

program of the Ministry of Higher Education and Scientific Research. It is 

intended for students of the first year of the Master of Renewable Energy in 
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Chapter 1: Fluid dynamics and transport equations 

1.1 Description of the movement 

1.1.1 Lagrange variable 

the Lagrangian specification of the flow field is a way of looking at fluid motion where the 

observer follows an individual fluid parcel as it moves through space and time 

A (a,b,c) the coordinates of a fluid particle at time to in the frame (0,x,y,z). 

The independent coordinates (a, b, c, t) are called Lagrange variables 

 

The coordinates of the particle at time t are M(x, y, z, t). The motion of the fluid is 

characterized by the following relations: 

{

𝑥 = 𝑓1(𝑎, 𝑏, 𝑐)

𝑦 = 𝑓2(𝑎, 𝑏, 𝑐)

𝑧 = 𝑓3(𝑎, 𝑏, 𝑐)
 

In this description of fluid motion, each particle is individually followed in its motion 

1.1.2 Euler variable 

To study fluid motion, it is often more convenient to use Euler variables. They allow, for 

example, to define the velocity field at each instant t and at any point M of the fluid. 

In the O,x,y,z frame of reference the velocity vector has the following components: 

𝑉⃗ (𝑥, 𝑦, 𝑧) ≡ (𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧) )  

Euler's point of view is more convenient for the experimenter, because we place 

ourselves at a point M(x, y, z) of the fluid and we study the variations of physical quantities 

(for example the speed) at different times. 

Euler's point of view is more convenient in kinematics because: 
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- for steady flows, the projection of the velocities in the frame does not depend on time 

- the velocity vectors of the flow form a vector field to which the properties of vector fields 

can be applied 

1.2 Streamline and stream tube  

1.2.1 Definition of streamlines 

A streamline is a tangent vectors to the instantaneous velocity direction (velocity is 

vector, and it has a magnitude and a direction) constitute the velocity vector field of the flow. 

These show the direction in which a massless fluid element will travel at any point in time. 

1.2.2 Definition of stream tube 

A stream tube is an imaginary tubular region of fluid surrounded by streamlines, 

which are lines drawn tangent to the instantaneous velocities of fluid particles. These 

streamlines form the walls of the stream tube and do not intersect except at points of zero 

velocity. For steady flow, the configuration of stream tubes remains fixed, while for unsteady 

flow, the configuration varies with time. Stream tubes are responsible for tangential fluid flow 

and prevent fluid from crossing the sides of the tube. 

1.2.3  Streamline equation  

Relative to an orthonormal frame, the differential equation of any streamline is written 

as: 

𝑑𝑥

𝑢(𝑥, 𝑦, 𝑧, 𝑡)
=

𝑑𝑦

𝑣(𝑥, 𝑦, 𝑧, 𝑡)
=

𝑑𝑧

𝑤(𝑥, 𝑦, 𝑧)
 

u(x,y,z,t), v(x, y, z, t) and  w(x, y, z, t) are the components of the speed in the frame (o, x, y,z) 

In this formula, time is fixed 

 

Fig 1.1 Streamline forming a stream tube 

1.3 Pathlines  
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The pathlines are the trajectoiries that individual fluid particles follow. These can be thought 

of as "recording" the path of a fluid element in the flow over a certain period. The direction 

the path takes will be determined by the streamlines of the fluid at each moment in time. 

The difference with the notion of streamline is that for the latter, we consider different 

particles at the same instant while the trajectory is relative to the same particle at different 

instants. 

 

Fig 1.2 Pathline  

The parametric differential equations of the trajectories are given by: 

{
 
 

 
 
𝑑𝑥 

𝑑𝑡
= 𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑦

𝑑𝑡
= 𝑣(𝑥, 𝑦, 𝑧, 𝑡)

𝑑𝑧

𝑑𝑡
= 𝑤(𝑥, 𝑦, 𝑧, 𝑡)

 

 

In these equations, time has become a variable 

Definition  

We consider a fluid particle be characterized by a scalar or vector quantity. The particle 

derivative of this quantity is the derivative with respect to time when we follow the particle in 

its motion. 

Examples: velocity is the particle derivative of position and acceleration is the particle 

derivative of velocity. 

We first consider this general case and seek to calculate the temporal evolution of a quantity f 

over a small volume around the point M. This speed of variation is called the total derivative 

of f and is noted df /dt. 
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If we denote by 𝑢𝑥 the velocity of point M, the latter passes from position x at time t to 

position  𝑥 + 𝑢𝑥. 𝑑𝑡 at time t + dt. Consequently, the speed of variation is: 

𝑑𝑓

𝑑𝑡
=
𝑓(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡) − 𝑓(𝑥, 𝑡)

𝑑𝑡
 

For dt sufficiently small, this speed is equal to: 

𝑑𝑓

𝑑𝑡
=
𝑓(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡) − 𝑓(𝑥, 𝑡 + 𝑑𝑡)

𝑑𝑡
+
𝑓(𝑥, 𝑡 + 𝑑𝑡) − 𝑓(𝑥, 𝑡)

𝑑𝑡
 

The second term on the righ is equal to the partial derivative 
𝜕𝑓

𝜕𝑡
 . Concerning the first, we can 

write the limited development: 

𝑓(𝑥 + 𝑑𝑥, 𝑡 + 𝑑𝑡) = 𝑓(𝑥, 𝑡 + 𝑑𝑡) +
𝜕𝑓

𝜕𝑥
𝑑𝑥 

Generalizing to three dimensions, this allows us to write: 

𝑑𝑓

𝑑𝑡
=
𝜕𝑓

𝜕𝑡
+ (𝑢.⃗⃗⃗  ∇)𝑓  

1.4 Flow concepts 

1.4.1 Definition of permanent (or stationary flow) 

The permanent or stready flow is a flow in which the velocity of the fluid at a particular fixed 

point does not change with time  

1.4.2 Conservative flow 

Local equation and steady state 

Steady state
𝝏𝝆

𝝏𝒕
= 𝟎  so  𝒅𝒊𝒗(𝝆𝑽⃗⃗ ) = 𝟎 

The resulting equation indicates that the flux 𝝆𝒗 of through a closed surface is zero 

∭ 𝒅𝒊𝒗(𝝆𝑽⃗⃗ )𝒅𝝉 =
𝜏

∬  𝝆𝑽⃗⃗  𝒅𝑺⃗⃗ = 𝟎
𝑆

 

This equation therefore means the conservation of mass flow rate. 

Case of incompressible fluid 

𝝏𝝆

𝝏𝒕
= 𝟎 and  𝝆 = 𝒄𝒔𝒕 

𝒅𝒊𝒗 𝑽⃗⃗ = 𝟎 
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So the flux of velocity through a closed surface is zero 

 ∭ 𝒅𝒊𝒗 𝑽⃗⃗  𝒅𝝉 =
𝜏

∬  𝑽⃗⃗  𝒅𝑺⃗⃗ = 𝟎
𝑆

 

The equation represents the conservation of flow rate in volume for an incompressible fluid 

 

1.4.3 Conservation of mass equation with mass production in flow 

Simply add the mass production term to the balance equation to obtain the local equation: 

𝒅𝒊𝒗(𝝆𝑽⃗⃗ ) +
𝜕𝜌

𝜕𝑡
= 𝜌𝑞̀ 

In this equation, q' represents mass production flow rate (in s-1) 

q' > 0, represents a source and q'< 0 a well 

Velocity field 

Case of the ideal solid (non-deformable) 

𝑉́𝑀
⃗⃗⃗⃗  ⃗ = 𝑉𝑀⃗⃗⃗⃗  ⃗ + 𝜔 ⃗⃗⃗⃗ ⋀ 𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

   

𝜔 ⃗⃗⃗⃗  is the rotation vector and: 

𝑉𝑀⃗⃗⃗⃗  ⃗ = 𝜔 ⃗⃗⃗⃗ ⋀ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   

By calculating  𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉𝑀⃗⃗⃗⃗⃗⃗   , we can write  𝑉́𝑀
⃗⃗⃗⃗  ⃗ in the form 

  

𝑉́𝑀
⃗⃗⃗⃗  ⃗ = 𝑉𝑀⃗⃗⃗⃗  ⃗ +

1
2⁄ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉𝑀⃗⃗⃗⃗⃗⃗ ⋀ 𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 
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Physical interpretation 

The first term of the velocity expression represents a translation and the second a rotation of 

the solid. 

The term 1 2⁄ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉𝑀⃗⃗⃗⃗⃗⃗ = 𝜔 ⃗⃗⃗⃗  where  𝜔 ⃗⃗⃗⃗  is the rotation vector.  

1.5 Vorticity vector and strain rate tensor 

Let us consider a volume element dt and two infinitely neighboring points M and M’. In the 

frame O, x, y, z the coordinates of M and M’ are: 

M(x, y, z) and  M'(x+dx, y+dy, z+dz) 

1.5.1 Expression of velocity 

The coordinates of the velocity are: 
    

𝑉𝑀⃗⃗⃗⃗  ⃗(𝑢(𝑥, 𝑦, 𝑧), 𝑣(𝑥, 𝑦, 𝑧), 𝑤(𝑥, 𝑦, 𝑧)) 
 

 

𝑉𝑀⃗⃗⃗⃗  ⃗  (

𝑢(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧)

𝑣(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧)

𝑤(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧)
) 

The coordinates of the speed in M' using the formula for finite increments. 

For example, for the component along x: 

𝑢(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧) +
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑢

𝜕𝑧
𝑑𝑧 

𝑣𝑖(𝑀′) = 𝑣𝑖(𝑀) +∑
𝜕𝑣𝑖
𝑥𝑗

3

𝑗=1
𝑑𝑥𝑗 

 

 

𝑣𝑖 represents a component of the velocity at point M' 

In vector form, we can write: 𝑉′𝑀⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑉𝑀⃗⃗⃗⃗  ⃗ + (𝑀𝑀′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. ∇⃗⃗ )𝑉𝑀⃗⃗⃗⃗  ⃗ 

To compare the previous expression with that of the perfect fluid and to highlight the meaning 

of the different terms, let us develop and calculate: 

𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑉.⃗⃗  ⃗ 𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗) = (𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗. ∇⃗⃗ ) 𝑉⃗ + (𝑉⃗ . ∇⃗⃗ )𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ + 𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ ∧ 𝑟𝑜𝑡 ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑉⃗ + 𝑉⃗ ∧ 𝑟𝑜𝑡 ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗  

We therefore obtain: 
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1.5.2 .Strain rate tensor 

 

 

 

𝐷̿ =
1

2

[
 
 
 
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
+
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
+
𝜕𝑤

𝜕𝑧 ]
 
 
 
 

 Symetric tenser 

 

To highlight the physical meaning of the different terms, let's write the velocity in the form: 

 

 𝑉′𝑀⃗⃗⃗⃗ ⃗⃗  ⃗ = 𝑉𝑀⃗⃗⃗⃗  ⃗ + 𝜔⃗⃗ ∧ 𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗ + 𝐷̿ 𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Note: si 𝐷̿ = 0, the deformation rate is zero and we return to the case of the perfect non-

deformable solid (or to the case of a deformable medium in relative absolute equilibrium) 

Physical meaning of the different terms 

𝑉𝑀⃗⃗⃗⃗  ⃗: Represents an overall translation of the volume element 

𝐷̿ 𝑀𝑀′⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ : represents the deformation of the volume element 

𝜔⃗⃗ ∧ 𝑀𝑀′⃗⃗⃗⃗⃗⃗ ⃗⃗  ⃗: is the moment of the vector 1 2⁄ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉𝑀⃗⃗⃗⃗⃗⃗  , it is the distribution of speeds during a 

block rotation of the volume element around an axis passing through M. 

1.6 Acceleration 

Expression of acceleration 

 𝑎  is the acceleration vector, by definition, we have:𝑎𝑀,𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑙𝑖𝑚Δ𝑡→0
 𝑉𝑀+𝑑𝑀,𝑡+∆𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑉𝑀,𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

∆𝑡
 

 

In the considered reference frame,  𝑉𝑀⃗⃗⃗⃗⃗⃗  has the coordinates: 

𝑉𝑀⃗⃗⃗⃗  ⃗(𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑣(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡)) 

the coordinate of the speed along the x axis and calculates its differential: 
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𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑢

𝜕𝑧
𝑑𝑧 +

𝜕𝑢

𝜕𝑡
𝑑𝑡 

This expression allows us to calculate the component of the acceleration on the x axis: 

 

𝑎𝑥 =
𝑑𝑢

𝑑𝑡
=
𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑦

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑧

𝑑𝑥

𝑑𝑡
+
𝜕𝑢

𝜕𝑡
 

Vector form 

We can write the previous expression: 

𝑎𝑥 =
𝜕𝑢

𝜕𝑥
𝑢 +

𝜕𝑢

𝜕𝑦
𝑣 +

𝜕𝑢

𝜕𝑧
𝑤 +

𝜕𝑢

𝜕𝑡
 

We can write the same type of relation for the components along y and z, so we obtain a 

vector relation: 

𝑎 =
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
+ (𝑉⃗ ∇⃗⃗ )𝑉⃗  

Other writing 

Using a vector equality, we obtain: 

𝑎 =
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
+ 1 2⁄ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉2⃗⃗ ⃗⃗  + 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉⃗ ∧ 𝑉⃗  

Physical interpretation: 

𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
 is called local acceleration, this term reflects the non-permanence of the flow, it is zero for 

a permanent flow 

Convective acceleration: 

(𝑉⃗ ∇⃗⃗ )𝑉⃗ = 1 2⁄ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉2⃗⃗ ⃗⃗  + 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉 ⃗⃗  ⃗ ∧ 𝑉⃗  

Is the convective acceleration, this term reflects the non-uniformity of the flow. 

To check whether a flow is steady, we place ourselves at a fixed point in the flow and 

measure the speed at different times. 

To see if a flow is uniform, we measure the velocity at different points in the flow, at the same  

time. 
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1.7 Irrotational flow 

Definition: Irrotational flow 

Irrotational flow is a flow for which we have: 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉⃗ = 0 

From this equation, we deduce: 

𝑉⃗ = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  Φ 

An irrotational flow is a flow with potential velocities and vice versa 

Continuity equation 

𝑑𝑖𝑣(𝜌𝑉⃗ ) +
𝜕𝜌

𝜕𝑡
= 0 

For an incompressible fluid and an irrotational flow, we obtain: 

𝑑𝑖𝑣𝑉⃗ = 0 either   𝑑𝑖𝑣(𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  Φ) = 0 

So: ΔΦ = 0  

Expression of acceleration 

𝑎 =
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
+ 1 2⁄ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉2⃗⃗ ⃗⃗   

Le terme𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉 ⃗⃗  ⃗ ∧ 𝑉⃗   est nul  

Definition: Rotational flow and vorticity vector 

The vorticity vector represents the instantaneous rotation speed vector: 

 𝜔⃗⃗ = 1 2⁄ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉⃗⃗  ⃗ 

Vortex line 

A vortex line is a line tangent at each of its points to the vortex vector, it is such that: 



 

15 

 

𝑑𝑥

𝜔𝑥
=
𝑑𝑦

𝜔𝑦
=
𝑑𝑧

𝜔𝑧
 

Properties 

By definition, the vortex vector field has a conservative flow:𝜔⃗⃗ = 1 2⁄ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉⃗⃗  ⃗ ⟹ 𝑑𝑖𝑣𝜔⃗⃗ = 0 

⟹∯ 𝜔⃗⃗ 𝑑𝑆⃗⃗⃗⃗ = 0 

Consequence: the flow of the vortex vector is constant in a vortex tube. 

The intensity of the vortex tube is called the quantity: 

𝐼 = ∯ 𝜔⃗⃗ 𝑑𝑆⃗⃗⃗⃗  

∯𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝑉⃗⃗  ⃗ 𝑑𝑆⃗⃗⃗⃗ = ∮  𝑉⃗⃗  ⃗  𝑑𝑙⃗⃗ ⃗⃗  = ∯ 2𝜔⃗⃗⃗⃗  ⃗𝑑𝑆⃗⃗⃗⃗ = 2𝑙 

 1.8 Flow at velocities potential 

This section is concerned with an important class of flow problems in which the vorticity is 

everywhere zero, and for such problems the Navier-Stokes equation may be greatly simplified. 

Finally, it may be shown that, when (∇ × V) is zero, one may describe the velocity by means 

of a scalar potential ϕ, using the equation  

 𝑉⃗⃗  ⃗ = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  Φ 

Hypotheses: we assume the case of a perfect incompressible fluid in irrotational and 

permanent plane flow. 

Dans ce cas, la vitesse dérive du potentiel Φ 

 𝑉⃗⃗  ⃗ = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  Φ 

And the continuity equation is written: 

ΔΦ = 0 

To know the flow (streamline, velocity), it is therefore necessary to solve the Laplace 

equation. For two-dimensional flows, the method of complex potentials, described below, is 

very successful. 

1.7.1 Conditions de Cauchy - Riemann  

f(z) the function of the complex variable  𝑥 + 𝑖𝑦x + i y, 𝑓(𝑧) is differentiable on a domain D 

if, in the complex plane: 

lim
𝑧→𝑧0

𝑓(𝑧)−𝑓(𝑧0)

𝑧−𝑧0
   tends towards a finite limit 

𝑑𝑓(𝑧)

𝑑𝑧
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We can put f(z) in the form : 

𝑓(𝑧) = Φ + 𝑖Ψ 

Where Φ is the potential function and Ψ the stream function 

1.7.2 Calculation of the derivative 

𝑑𝑓(𝑧)

𝑑𝑧
=
𝑑Φ + 𝑖𝑑Ψ

𝑑𝑥 + 𝑖𝑑𝑦
 

For  f  f (Φ and  Ψsatisfy the Laplace equation), this derivative must be independent of dz, 

that is, by developing: 

𝑑𝑓(𝑧)

𝑑𝑧
=
(
𝜕Φ
𝜕𝑥
𝑑𝑥 +

𝜕Φ
𝜕𝑦
𝑑𝑦) + 𝑖 (

𝜕Ψ
𝜕𝑥
𝑑𝑥 +

𝜕Ψ
𝜕𝑦
𝑑𝑦)

𝑑𝑥 + 𝑖𝑑𝑦
 

𝑑𝑓(𝑧)

𝑑𝑧
=
(
𝜕Φ
𝜕𝑥
+ 𝑖

𝜕Ψ
𝜕𝑥
) 𝑑𝑥 + (

𝜕Ψ
𝜕𝑦
+
1
𝑖
𝜕Φ
𝜕𝑦
) 𝑖𝑑𝑦

𝑑𝑥 + 𝑖𝑑𝑦
 

𝜕Φ

𝜕𝑥
+ 𝑖

𝜕Ψ

𝜕𝑥
=
𝜕Ψ

𝜕𝑦
+
1

𝑖

𝜕Φ

𝜕𝑦
 

1.7.3 Holomorphic function 

The independence condition implies that: 

 
𝜕Φ

𝜕𝑥
+ 𝑖

𝜕Ψ

𝜕𝑥
=
𝜕Ψ

𝜕𝑦
+
1

𝑖

𝜕Φ

𝜕𝑦
 

We therefore obtain the relations   {

𝜕Φ

𝜕𝑥
=
𝜕Ψ

𝜕𝑥
= 𝑢

𝜕Φ

𝜕𝑦
= −

𝜕Ψ

𝜕𝑦
= 𝑣

 

u and v are the componantes of velocity. These are the Cauchy Riemann conditions: the 

function f(z) is holomorphic on the domain D 

1.7.4 Uniform Stream in the x Direction  

A uniform stream V = iU,  possesses both a stream function and a velocity potential, which 

may be found as follows: 

𝝏𝚽

𝝏𝒙
=
𝝏𝚿

𝝏𝒙
= 𝒖 = 𝑈    

𝜕Φ

𝜕𝑦
= −

𝜕Ψ

𝜕𝑦
= 𝑣 = 0 

We may integrate each expression and discard the constants of integration, which do not 

affect the velocities in the flow. The results are : 
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A uniform stream     Ψ = 𝑈𝑦                                  Φ = 𝑈𝑥 

The streamlines are horizontal straight lines (y = const), and the potential lines are vertical (x 

= const), that is, orthogonal to the streamlines, as expected as presented in the figure 1.5.a. 

 

Fig 1.5  a uniform stream in the x direction (Solid lines are streamlines; dashed lines are 

potential lines) 

1.7.5 Line Source or Sink at the Origin  

Suppose that the z axis were a sort of thin pipe manifold through which fluid issued at total 

rate Q uniformly along its length b. Looking at the (xy) plane, we would see a cylindrical 

radial outflow or line source, as sketched in Figure 1.5b.  

𝑣𝑟 =
𝑄

2𝜋 𝑟𝑏
=
𝑚

𝑟
=
1

𝑟

𝜕Ψ

𝜕𝜃
=
𝜕Φ

𝜕𝑟
 

𝑣𝜃 = 0 = −
𝜕Ψ

𝜕𝑟
=
1

𝑟

𝜕Φ

𝜕𝜃
 

Where we have used the polar coordinate forms of the stream function and the velocity 

potential. Integrating and again discarding the constants of integration, we obtain the proper 

functions for this simple radial flow: 

Line source or Sink: 

Ψ = mθ                    Φ = m ln r  

Where m = Q/(2πb) is a constant, positive for a source, negative for a sink. As shown in 

Figure (1.5b), the streamlines are radial spokes (constant θ), and the potential lines are circles 

(constant r) 

1.7.6 Line Irrotational Vortex  

A (two-dimensional) line vortex is a purely circulating steady motion, Ψ𝜃 = 𝑓(𝑟)ψθ only, 

Ψ𝜃 = 0. This satisfies the continuity equation identically. We may also note that a variety of 
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velocity distributions Ψ𝜃(𝑟) satisfy the 𝜃 momentum equation of a viscous fluid. The function 

Ψ𝜃(𝑟)  is irrotational; that is, curl V = 0, and Ψ𝜃(𝑟) = 𝑘/𝑟, where K is a constant. This is 

sometimes called a free vortex, for which the stream function and velocity may be found: 

𝑣𝑟 = 0 =
1

𝑟

𝜕Ψ

𝜕𝜃
=
𝜕Φ

𝜕𝑟
 

𝑣𝜃 =
𝑘

𝑟
= −

𝜕Ψ

𝜕𝑟
=
1

𝑟

𝜕Φ

𝜕𝜃
 

 We may again integrate to determine the appropriate functions:  

Ψ = −kln r       and      Φ = K θ   

where K is a constant called the strength of the vortex. As shown in Figure. 1.3c, the 

streamlines are circles (constant r), and the potential lines are radial spokes (constant θ).  

Note the similarity between Eqs. (8.13) and (8.14). A free vortex is a sort of reversed image of 

a source. The “bathtub vortex,” formed when water drains through a bottom hole in a tank, is 

a good approximation to the free-vortex pattern. Each of the three elementary flow patterns in 

Fig. 8.3 is an incompressible irrotational flow and therefore satisfies both plane “potential 

flow” equations = 2χ = 0 and = 2 ϕ = 0. Since these are linear partial differential equations, 

any sum of such basic solutions is also a solution. Some of these composite solutions are quite 

interesting and useful 

 

Figure 1.6. Potential flow due to a line source plus an equal line sink, from. Solid lines 

are streamlines; dashed lines are potential lines. 

For example, consider a source +m at (x, y) = (−a, 0), combined with a sink of equal strength 

−m, placed at (+a, 0), as in Fig. 8.4. The resulting stream function is simply the sum of the 

two. In cartesian coordinates : 
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Ψ = Ψ𝑆𝑜𝑢𝑟𝑐𝑒 +Ψ𝑆𝑖𝑛𝑘 = 𝑚 𝑡𝑎𝑛
−1

𝑦

𝑥 + 𝑎
−𝑚 𝑡𝑎𝑛−1

𝑦

𝑥 − 𝑎
 

Similarly, the composite velocity potential is: 

Φ = Φ𝑆𝑜𝑢𝑟𝑐𝑒 +Φ𝑆𝑖𝑛𝑘 =
1

2
𝑚 ln[(𝑥 + 𝑎)2 + 𝑦2] −

1

2
𝑚 ln[(𝑥 − 𝑎)2 + 𝑦2] 

By using trigonometric and logarithmic identities, these may be simplified to: 

Source plus Sink: 

Ψ = −𝑚 𝑡𝑎𝑛−1
2 𝑎 𝑦

𝑥2 + 𝑦2 − 𝑎2
 

Φ =
1

2
𝑚 ln

(𝑥 + 𝑎)2 + 𝑦2

(𝑥 − 𝑎)2 + 𝑦2
 

These lines are plotted in Figure (1.7) and are seen to be two families of orthogonal circles, 

with the streamlines passing through the source and sink and the potential lines encircling 

them. They are harmonic (laplacian) functions that are exactly analogous in electromagnetic 

theory to the electric current and electric potential patterns of a magnet with poles at (±a, 0). 

 

Fig. 1.7 Superposition of a sink plus a vortex, Eq. (8.16), simulates a tornado 

Uniform Stream Plus a Sink at the Origin: The Rankine Half-Body 

If we superimpose a uniform x-directed stream against an isolated source, a half-body shape 

appears. If the source is at the origin, the combined stream function is, in polar coordinates, 

We can set this equal to various constants and plot the streamlines, as shown in Figure (1.8). 

A curved, roughly elliptical, half-body shape appears, which separates the source flow from 

the stream flow. The body shape, which is named after the Scottish engineer W. J. M. 
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Rankine (1820–1872), is formed by the particular streamlines χ = ±πm. The half-width of the 

body far downstream is πm/U. The upper surface may be plotted from the relation: 

 

 

It is not a true ellipse. The nose of the body, which is a “stagnation” point where V = 0, stands 

at (x, y) = (−a, 0), where a = m/U. The streamline χ = 0 also crosses this point—recall that 

streamlines can cross only at a stagnation point. 

 

Fig. 1.8 Superposition of a source plus a uniform stream forms a Rankine half-body. 

The cartesian velocity components are found by differentiation: 

𝑢 =
∂Ψ

𝜕𝑦
= 𝑈 +

𝑚

𝑟
𝑐𝑜𝑠𝜃                                    𝑣 = −

∂Ψ

𝜕𝑦
=
𝑚

𝑟
sin 𝜃  

 

Setting u = ψ = 0, we find a single stagnation point at θ = 180° and r = m/U, or (x, y) = (−m/U, 

0), as stated. The resultant velocity at any point is, 

𝑈2 = 𝑢2 + 𝑣2 = 𝑈2 (1 +
𝑎2

𝑟2
+
2𝑎

𝑟
cos 𝜃)  

 

where we have substituted m = Ua. If we evaluate the velocities along the upper surface χ = 

πm, we find a maximum value Us, max ≈ 1.26U at θ = 63°. This point is labeled in Figure(1.8) 
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and, by Bernoulli’s equation, is the point of minimum pressure on the body surface. After this 

point, the surface flow decelerates, the pressure rises, and the viscous layer grows thicker and 

more susceptible to “flow separation”. 

 

 

 

 

Chapter 2: Perfect Fluid and its Applications 

2. Euler's equation of motion  

In this chapter, we only consider fluids whose viscosity can be neglected; there is no friction 

between the different layers of fluids; these fluids are said to be perfect. 

a. Euler equation 

b. Local equation 

c. General form 

On each fluid volume element, we define: 

𝜌 : the density  

𝐹: ⃗⃗ ⃗⃗    Volume density of  force (N/m3). 

𝑎  : l'accélération par rapport au référentiel galiléen O, x, y, z. 

Writing the integral equation 

By writing the fundamental relation of dynamics relative to the Galilean frame of reference 

O,x ,y,z : 

 

Fig 2.1 Control volume 
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∭
𝜏
𝐹 ⃗⃗  ⃗𝑑𝜏 +∬ −𝑃𝑑𝑆 =∭ 𝜌 𝑎 ⃗⃗⃗  𝑑𝜏

𝜏𝑆

 

Using the gradient formula: 

∬ −𝑃𝑑𝑆 =∭ −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 𝑑𝜏
𝜏𝑆

 

We get: 

∭
𝜏
(𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 − 𝜌 𝑎 ⃗⃗⃗  )𝑑𝜏 = 0 

 

 

The previous formula is true whatever the volume element chosen, we can therefore write: 

𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 − 𝜌 𝑎 ⃗⃗⃗  = 0  

This equation represents the local form of Euler's equation (true at every point of the fluid). 

From the balance of the forces applied to the fluid and the kinematic characteristics of the 

flow, it is this equation which will be used for the study of flows.Autres expressions de 

l'équation d'Euler 

In the previous equation, the acceleration of the fluid is written (fluid kinematics): 

𝑎 =
𝑑𝑉⃗⃗⃗⃗  ⃗

𝑑𝑡
=
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
+ 1 2⁄ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉2⃗⃗ ⃗⃗  + 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉⃗ ∧ 𝑉⃗  

In this expression: 

𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
 is the local acceleration (non-permanence of the flow). 

 1 2⁄ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉2⃗⃗ ⃗⃗  + 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉⃗ ∧ 𝑉⃗  is the convective acceleration (non-uniformity of the flow). 

Remarks 

A dynamic equation is insufficient for a complete study of a flow. 

The characteristics of the flow of a fluid are given by: 

- the speed V 

- the pressure P 

- the density ρ 

- the temperature T 

Euler's equation must therefore be supplemented by other equations characterizing the fluid, 

its movement and the flow conditions. 
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Elements to add 

We must therefore add: 

a. the mass conservation equation 

b. 𝒅𝒊𝒗(𝝆𝑽⃗⃗ ) +
𝜕𝜌

𝜕𝑡
= 0 

c. the equation of state of the fluid : 𝑓(𝑃, 𝜌, 𝑇) = 0  

d. the equation characterizing the type of transformation undergone by the fluid 

(incompressible, isothermal, adiabatic, etc.). 

e. the boundary conditions and initial conditions which allow the determination of the 

integration constants. 

2.2 Characteristic equation of the fluid 

- incompressible liquid: 𝜌 = 𝑓(𝑇)  

- slightly compressible liquid:𝜌 = 𝜌0(𝑇)(1 + 𝑘𝑃)                

- Perfect gas:   
𝑃

𝜌
= 𝑟𝑇 

The transformations undergone 

In the case of reversible transformations: 

For isotherms: 𝜌 = 𝑐𝑠𝑡 (incompressible fluid) et 
𝑃

𝜌
= 𝑐𝑠𝑡 (perfect gas). 

For adiabatic transformations: 𝜌 = 𝑐𝑠𝑡 (incompressible fluid) et 
𝑃

𝜌𝛾
= 𝑐𝑠𝑡 (perfect gas). 

Dynamic equation relative to the perfect fluid 

Bernoulli relation Calculation hypotheses 

Considering 

- A perfect fluid (without viscosity) 

- Incompressible (ρ = cste) 

- In steady flow (partial derivatives with respect to time are zero) 

- The volume force density derives from a potential U 𝐹 = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑈 

- the walls limiting the fluid are fixed (no work provided) and adiabatic (no heat exchange 

with the exterior).Première approche : équation dynamique 

In this first approach, we start from the dynamic equation (Euler's equation) and take into 

account the hypotheses:𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 = 𝜌 𝑎 ⃗⃗⃗   
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𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 = 𝜌
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
+ 𝜌𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑉2

2

⃗⃗ ⃗⃗ 
+ 𝜌𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉⃗ ∧ 𝑉⃗  

Taking up the hypotheses:  

𝐹 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑈 → Volume forces deriving from a potential 

𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
= 0 → the movement is permanent 

𝜌𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉
2

2
=

⃗⃗⃗⃗ ⃗⃗ ⃗⃗  
 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (

𝜌 𝑉2⃗⃗ ⃗⃗  ⃗

2
) → the fluid is incompressible 

Demonstration 

We obtain by replacing in the dynamic equation: 

−𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝑈 +
𝜌 𝑉2⃗⃗ ⃗⃗  

2
) = 𝜌 𝑟𝑜𝑡 ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑉⃗ ∧ 𝑉⃗  

Considering a streamline and take the elementary circulation of the two preceding 

terms:−𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝑈 +
𝜌 𝑉2⃗⃗ ⃗⃗  ⃗

2
) . 𝑑𝑙⃗⃗  ⃗ = 𝜌 𝑟𝑜𝑡 ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑉⃗ ∧ 𝑉⃗ . 𝑑𝑙⃗⃗  ⃗ 

We note that the second term is zero (𝑉⃗  𝑎𝑛𝑑 𝑑𝑙⃗⃗  ⃗ are collinear). 

 

 
 

Result 

We therefore obtain: 

 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝑈 +
𝜌 𝑉2

2
) . 𝑑𝑙⃗⃗  ⃗ = 0 

Using the gradient theorem, we get: 

 𝑑 (𝑃 + 𝑈 +
𝜌 𝑉2

2
) = 0 ⟹ 𝑃 + 𝑈 +

𝜌 𝑉2

2
= 𝑐𝑠𝑡 

Analysis of the result shows that the unit is the pascal (i.e. the joule per cubic meter). The 

sum of these three terms therefore represents the mechanical energy of the fluid per unit 

volume and this is constant along a streamline. 
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In general, the volume forces are the gravitational forces and the potential U is written as 

U = ρgz with g the acceleration of gravity and z the position of the fluid particle 

considered. 

 

 

Conclusion  

Bernoulli’s Principle Formula is therefore written: 

𝑃 + 𝜌𝑔𝑧 +
𝜌 𝑉2

2
= 𝑐𝑠𝑡  

This equation is applies, in the case of a perfect, incompressible fluid in permanent motion, in 

the case where the volume forces are the forces of gravity with fixed walls and without heat 

exchange with the exterior. 

Physical meaning: it is an equation of conservation of energy 

1. The first term represents the work of the pressure forces (per unit volume). 

2. The second term represents the kinetic energy (per unit volume). 

3. The third term represents the potential energy of the situation (per unit volume). 

Second approach: Conservation of energy 

2.3 Kinetic energy theorem 

As we have seen previously, the Bernoulli relation is an equation of conservation of 

the mechanical energy of the fluid during its movement, let us see how to find the result using 

the kinetic energy theorem. 

    
 

The assumptions regarding the fluid and the flow are the same. We consider a current 

stream ABA'B' at time t. At t + dt, the stream changes to CDC'D'. 

 Appling the kinetic energy theorem to the current flow between times t and t + dt: 

1

2
𝑑𝑚(𝑉2

2 − 𝑉1
2) = 𝑑𝑚 𝑔(𝑧1 − 𝑧2) + (𝑃1 − 𝑃2)𝑑𝜏 



 

26 

 

 

dτ = ABB'A' = CDC'D'  and  dm = ρdτ 

We therefore obtain: 

1

2
𝜌𝑉1

2 + 𝜌𝑔𝑧1 + 𝑃1 =
1

2
𝜌𝑉2

2 + 𝜌𝑔𝑧2 + 𝑃2 

We find the three terms indicating the conservation of the mechanical energy of the fluid: 

kinetic energy, potential situational energy and pressure energy (always per unit of volume). 

Other writings of the Bernoulli equation 

Bernoulli's equation can be written in other forms: 

By dividing all the terms par ρ, the unit of the different terms of the equation becomes the 

joule per kilogram: 

1

2
𝑉1
2 + 𝑔𝑧1 +

𝑃1
𝜌
= 𝑐𝑠𝑡 (J. kg−1)  

By dividing all the terms of the equation by ρg, the unit of the different terms becomes the 

meter: 

𝑉1
2

2𝑔
+ 𝑧1 +

𝑃1
𝜌𝑔

= 𝐻 = 𝑐𝑠𝑡 (𝑚)  

2.4 Graphic interpretation of Bernoulli equation 

In the language of fluid mechanics, the mechanical energy of the fluid represented by the 

sum of the three terms of the Bernoulli relation is called the flow head.Writing the 

Bernoulli relation in meters shows that we can make a graphical interpretation: 
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Fig . Graphical representation of the load of a flow in a conduit. 

Z:  The elevation head is (h) of the fluid above an arbitrarily designated zero point: 

(compared to a reference plan). 

P / ρg pressure head is the height of a liquid column that corresponds to a particular 

pressure exerted by the liquid column on the base of its container. It may also be 

called static pressure head or simply static head. 

V2 / 2g :velocity head is due to the bulk motion of a fluid.  

Note: Case of real fluids (viscous fluid) 

For real fluids (having a viscosity), the load line will not be horizontal but decreasing, this 

decrease will indicate the load losses in the flow field (energy losses).  

Note: Case of gases 

For velocity not exceeding 0.3 times the speed of sound, we can assume that ρ = cste. In 

addition, the energy related to variations in coasts is often negligible (compared to the other 

terms). We therefore neglect the term ρgz in the Bernoulli equation. 

2.5 Generalized Bernoulli theorem 

Hypotheses 

We consider the flow of an incompressible fluid in a non-steady state in a volume 𝜏. We call 

F the volume force exerted by the moving walls of a machine on the fluid.. 

The fundamental principle of dynamics is written: 
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Fig 2.2 volume and surface forces applied by control volume 

  

∑𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 = 𝜌 𝑎 ⃗⃗⃗   

 

Either by developing: 

−𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝜌𝑔𝑧 +
𝜌𝑉2

2
) + 𝐹 = 𝜌

𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
+ 𝜌𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝑉⃗ ∧ 𝑉⃗  

∭ 𝑉⃗ . 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝜌𝑔𝑧 +
𝜌𝑉2

2
)𝑑𝜏

𝜏

+ ∭
𝜌

2

𝜕𝑉2

𝜕𝑡
𝑑𝜏

𝜏

=∭ 𝐹 
𝜏

. 𝑉⃗ 𝑑𝜏 

Avec l’égalité vectorielle 𝑑𝑖𝑣(𝑓. 𝐴 ) = 𝑓𝑑𝑖𝑣(𝐴 ) + 𝐴 ⃗⃗  ⃗ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑓 true for a scalar function 

𝑓 and a vector field  𝐴 ⃗⃗  ⃗)  applied to: 

𝑓 = (𝑃 + 𝜌𝑔𝑧 +
𝜌𝑉2

2
) and   𝐴 = 𝑉⃗  

We obtain : 𝑑𝑖𝑣 ((𝑃 + 𝜌𝑔𝑧 +
𝜌𝑉2

2
) 𝑉⃗ ) = 𝑉⃗  𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝜌𝑔𝑧 +

𝜌𝑉2

2
) 

∭ 𝑑𝑖𝑣 ((𝑃 + 𝜌𝑔𝑧 +
𝜌𝑉2

2
) 𝑉⃗ )𝑑𝜏 +∭

𝜌

2

𝜕𝑉2

𝜕𝑡
𝑑𝜏

𝜏

= 𝑊̇ 

∯ ((𝑃 + 𝜌𝑔𝑧 +
𝜌𝑉2

2
) 𝑉⃗ )

𝑆

𝑑𝑆 +∭
𝜌

2

𝜕𝑉2

𝜕𝑡
𝑑𝜏

𝜏

= 𝑊̇

        𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑜𝑤 𝑜𝑢𝑡 𝑜𝑓  𝑆                𝑃𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑

 

 

2.6 Fluid passing through a hydraulic machine 

Hypotheses 
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Let us consider a perfect fluid, in permanent flow, at the level of the machine. The walls 

provide the fluid with a volumetric mechanical energy W (J.m-3), 

heat exchanges are neglected. 

We consider at time t a current trickle ABB'A' of an incompressible fluid, in the gravity field 

and passing through the hydraulic machine. 

At time t+dt, the fluid is in CDD'C'. 

 

 
Fig 2.3 Flow through a hydraulic machine 

 

 

Applying the kinetic energy theorem to the current flow between the instants t and t t+dt 

1

2
𝑑𝑚(𝑉2

2 − 𝑉1
2) = 𝑑𝑚 𝑔(𝑧1 − 𝑧2) + (𝑃1 − 𝑃2)𝑑𝜏 +𝑊𝑑𝜏 

With 𝜌𝑑𝜏 we obtain after simplification: 

1

2
𝜌𝑉1

2 + 𝜌𝑔𝑧1 + 𝑃1 =
1

2
𝜌𝑉2

2 + 𝜌𝑔𝑧2 + 𝑃2 +𝑊  |
𝑊 < 0 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑚𝑜𝑡𝑟𝑖𝑐𝑒      
𝑊 > 0 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑔é𝑛𝑒𝑟𝑎𝑡𝑖𝑐𝑒

 

Interpretation: 

The energy of the fluid after the machine is equal to that before it plus the energy provided by 

the machine 

 

2.7 non-permanent flows and  rotational flow 

We consider the flow of a perfect fluid, the acting volume forces derive from a potential, and 

the flow is non-permanent. 

 

We write the Euler equation: 

∑𝐹 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 = 𝜌 𝑎 ⃗⃗⃗   

En tenant compte des hypothèses, et en développant l'expression de l'accélération, on obtient : 
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Fig 2.4 velocity field  
 

𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑃 + 𝜌𝑔𝑧 +
𝜌 𝑉2

2
) + 𝜌

𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
= 𝜌 𝑟𝑜𝑡 ⃗⃗ ⃗⃗ ⃗⃗  ⃗𝑉⃗ ∧ 𝑉⃗  

We calculate the circulation of the previous expression between M1 and M2. 

Demonstration: 

1

2
𝜌𝑉2

2 + 𝜌𝑔𝑧2 + 𝑃2 −
1

2
𝜌𝑉1

2 − 𝜌𝑔𝑧1 − 𝑃1 + 𝜌∫
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡

𝑀2

𝑀1

𝑑𝑙 = 0 

 

1

2
𝜌𝑉2

2 + 𝜌𝑔𝑧2 + 𝑃2 + 𝜌∫
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡

𝑀2

𝑀1

𝑑𝑙 =  
1

2
𝜌𝑉1

2 + 𝜌𝑔𝑧1 + 𝑃1 

Particular  case 

Case where the cross-section of the current flow is constant: 

The fluid is incompressible, so the flow rate is conserved in volume(𝑑𝑖𝑣𝑉⃗⃗⃗⃗  ⃗ = 0) , as the 

section is constant, the velocity is also constant: 𝑉1⃗⃗  ⃗ = 𝑉2⃗⃗  ⃗ . At every moment𝑉⃗ et 
𝜕𝑉⃗⃗⃗⃗  ⃗

𝜕𝑡
have the 

same value along the streamline. 

𝜌𝑔𝑧2 + 𝑃2 + 𝜌𝑙
𝜕𝑉⃗ 

𝜕𝑡
= 𝜌𝑔𝑧1 + 𝑃1 

2.8 Momentum theorem 

The particle derivative of the torsor [𝑄] of the momentum of a material system is equal to the 

torsor of the external forces applied to this system. 



 

31 

 

Let  be the torsor of the external forces, the mathematical translation of the statement is: 

𝑑[𝑄]

𝑑𝑡
= [𝐹𝑒] 

Demonstration 

The torsor [𝑄] of the quantities of motion is written: [𝑄] = ∭ 𝜌
𝜏

𝑉⃗ 𝑑𝜏 

𝜌𝑉⃗⃗⃗⃗  ⃗𝑑𝜏 is the elementary torsor of the quantities of motion. 

 
Fig 2.5 motion of control volume 

Develop the particle derivative of the torsor of the quantities of motion using the result 

obtained in fluid kinematics.
𝑑[𝑄]

𝑑𝑡
=∭

𝜕(𝜌𝑉⃗⃗ )

𝜕𝑡𝜏
𝑑𝜏 +∯ (𝜌𝑉⃗ )

𝑆
𝑉⃗  𝑛⃗  𝑑𝑆 

The torsor of external forces consists of two terms: 

The torso of superficial surfaces:[𝐹𝑆] = ∯ [𝜎 ]𝑑𝑆
𝑆

 

Torsor of volume forces: [𝐹𝑉] = ∰ 𝜌𝐹 𝑑𝜏
𝜏

 

Where  

∭
𝜕(𝜌𝑉⃗ )

𝜕𝑡𝜏

𝑑𝜏 +∯ (𝜌𝑉⃗ )
𝑆

𝑉⃗  𝑛⃗  𝑑𝑆 = ∯[𝜎 ]𝑑𝑆

𝑆

+∰𝜌𝐹 𝑑𝜏

𝜏

 

  

The equality of the resulting moments: 

∭ 𝑂𝑀⃗⃗⃗⃗ ⃗⃗   ∧
𝜕(𝜌𝑉⃗ )

𝜕𝑡𝜏

𝑑𝜏 +∯ 𝑂𝑃⃗⃗⃗⃗  ⃗  ∧ 𝜌𝑉⃗ 
𝑆

(𝑉⃗  𝑛⃗  )𝑑𝑆 = ∯𝑂𝑃⃗⃗⃗⃗  ⃗  ∧ 𝜎  𝑑𝑆

𝑆

+∰(𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   ∧ 𝜌𝐹)⃗⃗⃗⃗ 𝑑𝜏

𝜏

 

These equalities are general, true whatever the fluid and its motion. 
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2.9 Steady flow: Euler's theorem 

Hypotheses 

A steady flow of fluid is considered (compressible or not).
𝜕(𝜌𝑉⃗⃗ )

𝜕𝑡
= 0 

∯ (𝜌𝑉⃗ )
𝑆

𝑉⃗  𝑛⃗  𝑑𝑆 = ∯𝜎 𝑑𝑆

𝑆

+∰𝜌𝐹 𝑑𝜏

𝜏

 

Resulting from the superficial surfaces:[𝑅⃗ ] = ∯ [𝜎 ]𝑑𝑆
𝑆

 

Resultant of volume forces: [𝑃⃗ ] = ∰ 𝜌𝐹 𝑑𝜏
𝜏

 

 

 
𝑞𝑚(𝑉⃗ 2 − 𝑉⃗ 1) = 𝑃⃗ + 𝑅⃗  

∯ (𝜌𝑉⃗ )
𝑆

𝑉⃗  𝑛⃗  𝑑𝑆 = 𝜌2𝑉2𝑆2𝑉2⃗⃗  ⃗ − 𝜌1𝑉1𝑆1𝑉1⃗⃗  ⃗ = 𝑞𝑚(𝑉⃗ 2 − 𝑉⃗ 1) 

2.9.1 Theorem statement 

In steady state, the system of flow rates of movements leaving the surface S is equivalent to 

the system of forces applied to the fluid contained in the surface. 

Summary: To apply the momentum theorem: 

- Define the surface limiting the fluid. 

- Balance the pressure forces on the surface. 

- Balance the volume forces. 
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Chapter 3: Real Fluid Dynamics 

3. Local equation 

Projecting the equation representing the equality of the resultants onto three trirectangular 

axes, we obtain three integral equations 

𝑑

𝑑𝑡
∭ 𝜌𝑢𝑖

𝜏

𝑑𝜏 = ∯[𝑇⃗ 𝑖]𝑑𝑆

𝑆

+∰𝜌𝐹𝑖𝑑𝜏

𝜏

 

Where  𝑢𝑖 , 𝐹𝑖 , 𝑇𝑖   are respectively the projections of the velocity, the force volume 

density and the surface force. 

The objective is to transform this formula to obtain a local equation (true at each point of 

the fluid) representing the dynamic equation. 

𝑑

𝑑𝑡
∭ 𝜌𝑢𝑖

𝜏

𝑑𝜏 =∭
𝑑

𝑑𝑡
(𝜌𝑢𝑖)

𝜏

𝑑𝜏 

∯[𝑇⃗ 𝑖]𝑑𝑆

𝑆

=∯𝜎𝑖𝑗 𝑛𝑗𝑑𝑆 =∰
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝑑𝜏

𝜏𝑆

 

Note : 
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
= 𝑑𝑖𝑣 𝜎𝑖𝑗  

∭
𝑑

𝑑𝑡
(𝜌𝑢𝑖)

𝜏

𝑑𝜏 =∰𝜌𝐹𝑖𝑑𝜏

𝜏

+∰
𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
𝑑𝜏

𝜏

 

𝑑

𝑑𝑡
(𝜌𝑢𝑖) =  𝜌𝐹𝑖 +

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
 

 

It is assumed that the volume forces are derived from a potential: 

𝐹 = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑈 donc 𝐹𝑖 = −
𝜕𝑈

𝜕𝑥𝑖
 

 

Let us introduce the following expression: 

𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + 𝜏𝑖𝑗 

 

𝑑

𝑑𝑡
(𝜌𝑢𝑖) = − 𝜌

𝜕𝑈

𝜕𝑥𝑖
−
𝜕𝑃

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
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We obtain: 

 

𝑑

𝑑𝑡
(𝜌𝑉⃗ ) = − 𝜌𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑈 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 + 𝑓  

 

This equation is the fundamental equation of viscous fluid dynamics. 

 
Fig 2.6 Stress tensor  

 

Let us write a limited development of the velocity to the first order. The gradient operator will 

be noted ∇ (we also find the notation "grade"): 

 

∇𝑈⃗⃗ =

[
 
 
 
 
 
 
𝜕𝑢𝑥
𝜕𝑥 

𝜕𝑢𝑥
𝜕𝑦 

𝜕𝑢𝑥
𝜕𝑧 

𝜕𝑢𝑦

𝜕𝑥 

𝜕𝑢𝑦

𝜕𝑦 

𝜕𝑢𝑦

𝜕𝑧 
𝜕𝑢𝑧
𝜕𝑥 

𝜕𝑢𝑧
𝜕𝑦 

𝜕𝑢𝑧
𝜕𝑧 ]

 
 
 
 
 
 

 

 

The velocity gradient 𝜵𝑼 is a tensor of order 2 that can be expressed as a sum of a symmetric 

tensor 𝑑 and an anti-symmetric tensor 𝑟: 

 

∇𝑈⃗⃗ = 𝑑 + 𝑟  𝑎𝑣𝑒𝑐    {
𝑑 =

1

2
. [∇𝑈⃗⃗ + (∇𝑈⃗⃗⃗⃗  ⃗)

𝑇
]

𝑟 =
1

2
. [∇𝑈⃗⃗ − (∇𝑈⃗⃗⃗⃗  ⃗)

𝑇
]
   Soit :        

𝑑𝑖𝑗 =
1

2
. [
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
]

𝑟𝑖𝑗 =
1

2
. [
𝜕𝑢𝑖

𝜕𝑥𝑗
−
𝜕𝑢𝑗

𝜕𝑥𝑖
]
 

 

The tensor 𝑑 is called the strain rate tensor and the tensor 𝑟  the rotation rate tensor. 
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3.1 Deformations 

In fluid mechanics, deformation rates are usually characterized by the tensor γ ̇ rather 

than the deformation rate tensor d defined by 𝛾̇  : 

 

𝛾̇ = 2. 𝑑  So :    𝛾̇𝑖𝑗 = [
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
] 

 

In any case, it is natural to describe the total strain (d) as the sum of an isotropic expansion 

(dexp) and a constant volume shear (dcis): 

d=dexp + dcis 

In the following, we analyze each of the two contributions 

 

3.2 Expansion: 

 

The following figure shows that during the time period dt, the volume of matter dV= dx,dy,dz 

evolves by the following amount: 

Illustration of deformations +translation+expansion+shear+rotation 

 

 

 
 

Two-dimensional geometric expansion of an infinitesimal material element 

 

𝑑𝑉 = (
𝜕𝑢𝑥
𝜕𝑥

. 𝑑𝑥. 𝑑𝑡) . 𝑑𝑦. 𝑑𝑧 + (
𝜕𝑢𝑦

𝜕𝑦
. 𝑑𝑦. 𝑑𝑡) . 𝑑𝑥. 𝑑𝑧 + (

𝜕𝑢𝑧
𝜕𝑧

. 𝑑𝑧. 𝑑𝑡) . 𝑑𝑥. 𝑑𝑦 

 

 

The relative volume variation is written as: 
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𝑑𝑉

𝑉
= (

𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑦

𝜕𝑦
+
𝜕𝑢𝑧
𝜕𝑧
)𝑑𝑡 

𝑑𝑉

𝑉
= (𝑑𝑖𝑣 𝑈⃗⃗ )𝑑𝑡 

Or again:  

𝑑𝑖𝑣 𝑈⃗⃗ =
1

𝑉
. 𝑑𝑉 𝑑𝑡 

An incompressible fluid is characterized by 𝒅𝒊𝒗 𝑼⃗⃗ = 𝟎 

 

The component of the strain rate tensor d associated with the isotropic expansion will be 

denoted 𝒅𝒆𝒙𝒑  and, logically, proportional to the divergence of the velocity. Since we are 

working in three dimensions, we will have: 

𝒅𝒆𝒙𝒑 =
𝒕𝒓𝒂𝒄𝒆(𝒅)

𝟑
. 𝑰               Soit :  𝒅 𝒆𝒙𝒑,𝒊𝒋 =

𝒅𝒊𝒗 𝒗⃗⃗ 

𝟑
. 𝜹𝒊𝒋 

 

Cisaillement On note dcis le tenseur obtenu par différence entre d et dexp 

 

𝑑cis = 𝑑 − 𝑑exp  

 

Either: 

𝑑cis =
1

2
. [
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
] −

𝑑𝑖𝑣 𝑣 

3
. 𝛿𝑖𝑗 

 

3.2 Newtonian fluid 

 

We have seen that the strain rate tensor d can be written as the sum of two contributions: 

a constant volume shear 𝑑cis  and an isotropic expansion 𝑑exp: 

𝑑 = 𝑑cis + 𝑑exp 

The shear stress tensor can also be seen as the sum of these two contributions: 

𝜏 = 𝜏cis + 𝜏exp 

A Newtonian fluid is a fluid characterized by a simple proportionality relationship between 

𝝉𝐜𝐢𝐬  and  𝒅𝐜𝐢𝐬  on the one hand and between 𝝉𝐞𝐱𝐩 and 𝒅𝐞𝐱𝐩 on the other hand: 

 

{

𝜏cis = 2𝜇. 𝑑𝑐𝑖𝑠

𝜏exp = 3𝜇𝑣. 𝑑𝑒𝑥𝑝

 

Finally, the shear stress tensor of a Newtonian fluid is written as: 

𝜏𝑖𝑗 = 𝜇. [
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
] + (𝜇𝑉 −

2

3
𝜇)

⏟      
𝜂

. 𝑑𝑖𝑣 𝑈 .⃗⃗ ⃗⃗  𝛿𝑖𝑗 

𝜏𝑖𝑗 = 2𝜇 𝐷𝑖𝑗 + 𝜂 (
𝜕𝑢𝑖
𝜕𝑥𝑗
) 

 

𝑑

𝑑𝑡
(𝜌𝑢𝑖) = − 𝜌

𝜕𝑈

𝜕𝑥𝑖
−
𝜕𝑃

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
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𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
= 𝜇Δ𝑢𝑖 + (𝜇 + 𝜂)

𝜕𝑔

𝜕𝑥𝑖
 

We recall: 

𝑒 = 𝑑𝑖𝑣𝑉⃗  

{
  
 

  
 
𝑑

𝑑𝑡
(𝜌𝑢) = − 𝜌

𝜕𝑈

𝜕𝑥
−
𝜕𝑃

𝜕𝑥
+ 𝜇Δ𝑢 + (𝜇 + 𝜂)

𝜕𝑔

𝜕𝑥
𝑑

𝑑𝑡
(𝜌𝑣) = − 𝜌

𝜕𝑈

𝜕𝑦
−
𝜕𝑃

𝜕𝑦
+ 𝜇Δ𝑣 + (𝜇 + 𝜂)

𝜕𝑔

𝜕𝑦
𝑑

𝑑𝑡
(𝜌𝑤) = − 𝜌

𝜕𝑈

𝜕𝑧
−
𝜕𝑃

𝜕𝑧
+ 𝜇Δ𝑤 + (𝜇 + 𝜂)

𝜕𝑔

𝜕𝑧

 

 

 With  

 
𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+𝑤

𝜕

𝜕𝑧
  

 ∆=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

 𝑔 = 𝑑𝑖𝑣𝑉⃗ =
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
 

  

 In vector form, the Navier Stokes equation is: 

  

 
𝑑

𝑑𝑡
(𝜌𝑉⃗ ) = − 𝜌𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑈 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 + 𝜇Δ𝑢 + (𝜇 + 𝜂)𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑑𝑖𝑣 𝑉⃗ )  

 

Last hypothesis: 

On suppose le fluide imcompressible donc  𝑑𝑖𝑣 𝑉⃗ = 0 

 where: 

 𝜌
𝑑𝑉⃗⃗ 

𝑑𝑡
= − 𝜌𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑈 − 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 + 𝜇Δ𝑢 

  

  

3.3 Flow in a two-dimensional conduit 

Hypotheses 

We consider an infinite two-dimensional conduit, of small thickness 2b, the x axis 

coincides with the axis of symmetry of the conduit. 

The fluid is considered Newtonian, incompressible in stationary (permanent) flow along the 

x axis. 

The Navier Stockes equation gives: 

𝑑

𝑑𝑡
(𝜌𝑢) = − 𝜌

𝜕

𝜕𝑥
(𝜌𝑔𝑦) −

𝜕𝑃

𝜕𝑥
+ 𝜇Δ𝑢

𝑑

𝑑𝑡
(𝜌𝑣) = − 𝜌

𝜕

𝜕𝑦
(𝜌𝑔𝑦) −

𝜕𝑃

𝜕𝑦
+ 𝜇Δ𝑣
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u, v components of the velocity along x and y 

Symmetry: in any plan xoy, we have the same profile so w=0 

There are no components of the velocity along y so v=0 

The continuity Equation  𝐝𝐢𝐯 𝐕⃗⃗ = 𝟎  imposed 
𝝏𝒖

𝝏𝒙
= 𝟎 

Differential equation 

{
 

 0 = −
𝝏𝑷

𝝏𝒙
+ 𝜇Δ𝑢

0 = −
𝝏𝑷

𝝏𝒚
− 𝝆𝒈

 

Since the thickness is small, we can consider that the term representing the gravitational 

forces is negligible. 

The velocity profile in the duct is therefore given by solving the following differential 

equation: 

𝜇
𝜕2  𝑢

𝜕𝑦2
=
𝜕𝑃

𝜕𝑥
 

 

Since u only depends on y, we can replace the partial derivative of the velocity by a total 

derivative.  

𝜇
𝑑2  𝑢

𝑑𝑦2
=
𝜕𝑃

𝜕𝑥
 

With   𝝁   et      
𝝏𝑷

𝝏𝒙
    are the constants 

Integrating twice we get: 

𝒖(𝒚) =
𝟏

𝟐𝝁
(
𝝏𝑷

𝝏𝒙
) (𝒚𝟐 − 𝒃𝟐)  :The velocity profile is parabolic. 
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3.4 Low Reynolds number- Stocks flow 

Stokes formula If Re ≪ 100, the factor 𝐶𝑥varies significantly according to the law:Formule 

de Stokes Si Re ≪ 100, le facteur C varie sensiblement suivant la loi : 

𝑙𝑛𝐶𝑥 = −𝑙𝑛𝑅𝑒 + 𝐶𝑠𝑡     →  𝐶𝑥 𝑅𝑒 =   𝐶𝑠𝑡     

Therefore, the drag is written as: 

𝑇 = 𝐶𝑥  
𝜌𝑓 𝑣2

2
 𝑆 = (

𝐶𝑠𝑡

𝑅𝑒
)
𝜌𝑓 𝑣2

2
 𝑆 = 𝐶𝑠𝑡 ×

𝑆

2𝐷
𝜇𝑣  

For a sphere of radius r, we obviously have 𝑆 = 𝜋 𝑟2et = 2𝑟  , we further show that the 

numerical constant is equal in this case to 24. This results in the following expression for the 

drag. 

 It is instructive to express this force T as a function of the low Reynolds number 

𝑅𝑒 =
𝑟 𝑣 𝜌

𝜇
 : 

𝑇 = 6𝜋𝜇 𝑟 𝑣 = 6𝜋𝑅𝑒 
𝜇2

𝜌
 

Note: For even lower Reynolds numbers, we can neglect the acceleration term of a body 

compared to the viscosity force, which gives the following relation, by designating by F an 

additional force, for example the weight of this body: 

𝑚
𝑑𝑣

𝑑𝑡
= −𝛼 𝑣 + 𝐹𝑠 ≈ 0     𝑣 ≈

𝐹𝑠
𝛼
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Chapter 4: Boundary Layers 
 

4. 1Introduction 

The concept of boundary layer was first introduced by a German engineer, Prandtl, in 1904. 

According to Prandtl's theory 

 

Fig 4.1 Boundary layer on a flat plate 

 

When a real fluid flows past a fixed solid wall, the flow is divided into two regions.A thin 

layer in the vicinity of the solid wall where viscous forces and rotation cannot be neglected. 

 

 An external region where viscous forces are very small and can be neglected. The flow 

behavior is similar to the free flow upstream. 

 

The flow on the plate can be divided into two domains. 

a. 0 ≤ y ≤ δ the viscous force effect is important. 

b. y > δ : Flow region external to the boundary layer where the viscous force is very 

small and can be neglected. There is no velocity gradient in this region and the fluid 

particle does not rotate when it enters the region external to the boundary layer. Hence, 

the flow is also called irrotational flow. 

 

Let's return to the boundary layer problem 

The pressure p and time are assumed to be of order 𝜌𝑈∞
2  et 𝐿

𝑈∞
⁄  respectively. 

We denote  𝑦 = 0   the flat plate and et 𝑒 = 𝐿𝑈∞/𝜈 . 

It is advantageous to start by considering the mass conservation equation. Here we assume 

that 
𝜕𝑢

𝜕𝑥
 is of the order

𝑈∞

𝐿
 and 

𝜕𝑣

𝜕𝑦
 is of the order  

𝑉0

𝛿
 , being a characteristic scale for v. To satisfy 



 

41 

 

the mass conservation equation, these two terms must be of the same order of magnitude. 

Then, we deduce: 

𝜕𝑢

𝜕𝑥⏟
𝑈∞
𝐿

−
𝜕𝑣

𝜕𝑦⏟
𝑉0
𝛿

= 0     

𝑉0 =
𝛿𝑈∞
𝐿

 

With this estimate taken into account, let us now examine the orders of magnitude of the 

different terms of the momentum equation: 

𝜕𝑢

𝜕𝑡⏟
𝑈∞

2

𝐿
∝
1

+ 𝑢
𝜕𝑢

𝜕𝑥⏟
𝑈∞

2

𝐿
∝
1

+ 𝑣
𝜕𝑢

𝜕𝑦⏟
𝛿𝑈∞
𝐿
𝑈∞
𝛿

∝
1

= −
1

𝜌
 
𝜕𝑃

𝜕𝑥⏟    
1
𝜌
𝜌𝑈∞

2

𝐿
∝
1

+ 𝑣
𝜕2𝑢

𝜕𝑥2⏟  
𝑣𝑈∞
𝐿2
∝
1
𝑅𝑒

+ 𝑣
𝜕2𝑢

𝜕𝑦2⏟  

𝑣𝑈∞
𝛿2
∝
1

𝑅𝑒(
𝐿
𝛿
)
2

 

According to y: 

𝜕𝑣

𝜕𝑡⏟
𝛿𝑈∞

2

𝐿2
∝
1

+ 𝑢
𝜕𝑣

𝜕𝑥⏟

𝛿𝑈∞
2

𝐿2
∝
1

+ 𝑣
𝜕𝑣

𝜕𝑦⏟
𝛿𝑈∞
𝐿
𝛿𝑈∞
𝐿𝛿

∝
1

= −
1

𝜌
 
𝜕𝑃

𝜕𝑥⏟    
1
𝜌
𝜌𝑈∞

2

𝛿
∝
1

+ 𝑣
𝜕2𝑣

𝜕𝑥2⏟  
𝑣𝛿𝑈∞
𝐿3
∝

1
𝑅𝑒
(
𝛿
𝐿
)

+ 𝑣
𝜕2𝑣

𝜕𝑦2⏟  

𝑣𝛿𝑈∞
𝐿𝛿2
∝

1
𝑅𝑒
(
𝐿
𝛿
)

 

Before applying the principle of least degeneracy we are faced with two possibilities: 

a. δ is (L) which leads for Re large to neglect the two terms where viscosity intervenes. 

b. δ is small compared to L which allows to keep the term in 𝑣
𝜕2𝑢

𝜕𝑦2
 in the momentum 

equation  where viscosity intervenes. For this we must have: 

1

𝑅𝑒
(
𝐿

𝛿
) = 1    ⇒               𝛿~𝑅𝑒−1 2⁄  𝐿  

With this choice for δ the equations reduce to: 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌
 
𝜕𝑃

𝜕𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑥2
 

𝜕𝑃

𝜕𝑦
= 0 
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At the leading order in Re. This system of equations is called the Prandtl equation for the 

boundary layer. 

For the two-dimensional problem on a flat plate these equations are written: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌
 
𝜕𝑃

𝜕𝑥
+ 𝑣

𝜕2𝑢

𝜕𝑥2
 

𝜕𝑃

𝜕𝑦
= 0 

As for the pressure, it is determined from the flow outside the boundary layer 𝑣 =

(𝑈𝑒(𝑥, 𝑡), 0): 

𝜕𝑈𝑒

𝜕𝑡
+ 𝑈𝑒

𝜕𝑈𝑒

𝜕𝑥
= −

1

𝜌
 
𝜕𝑃

𝜕𝑥
  Boundary layer equation 

4.2 Boundary layer development 

The boundary layer equation shows that the curvature of the velocity profile at the wall, with 

u(x, y = 0) = v(x, y = 0) = 0, depends only on the pressure gradient: 

0 = −
1

𝜌
 
𝜕𝑃

𝜕𝑥
+ 𝑣 (

𝜕2𝑢

𝜕𝑥2
)
𝑦=0

 

This leads to: 

(
𝜕2𝑢

𝜕𝑥2
)
𝑦=0

= −
1

𝑣
𝑈𝑒
𝑑𝑈𝑒
𝑑𝑥

 

Because Ue and P only depend on x. 

 

4.2 Evolution of the boundary layer on a solid body, x is the curvilinear abscissa, S 

the point of detachment or separation. 
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A negative pressure gradient, dp/dx < 0, implies an increase in velocity Ue, dUe/dx > 0, an 

acceleration in the direction of flow. 

𝑑𝑈𝑒

𝑑𝑥
> 0  i.e. an acceleration in the direction of the flow. On the other hand, a positive gradient 

leads to a deceleration of the flow. This is why the pressure gradient in the first case is said to 

be favorable and in the second unfavorable. 

 

To solve this problem, let us start by integrating the mass conservation equation with respect 

to y. We find: 

𝜕

𝜕𝑥
∫ 𝑢𝑑𝑦 + 𝑣(𝑥, 𝑦 = 0) = 0
𝑦

0

 

 

Which shows that there exists a function ψ(x, y) defined by: 

Ψ(𝑥, 𝑦) = ∫ 𝑢𝑑𝑦
𝑦

0

 

 

This satisfies the mass conservation equation: 

𝑢 =
𝜕Ψ

𝜕𝑦
                    𝑣 = −

𝜕Ψ

𝜕𝑥
         𝑡𝑒𝑙 𝑞𝑢𝑒  Ψ(𝑥, 𝑦 = 0) = 0  

 

So let's look for a solution in the form: 

Ψ(𝑥, 𝑦) = √𝑣𝑥 𝑈∞ 𝑓(𝑛)          𝑤𝑖𝑡ℎ  𝑦 =  𝜂√𝑣𝑥 /𝑈∞  

 

For laminar flow past the plate, the boundary layer equations   can be solved exactly for u and 

ψ, assuming that the free-stream velocity U is constant (dU/dx = 0). The solution was given 

by Prandtl’s student Blasius, in his 1908 dissertation from Göttingen. With an ingenious 

coordinate transformation, Blasius showed that the dimensionless velocity profile u/U is a 

function only of the single composite dimensionless variable  

 

 

𝜕

𝜕𝑥
=
𝜕𝜂

𝜕𝑥
 
𝜕

𝜕𝜂
 ,   
𝜕

𝜕𝑦
= (

𝑈∞
𝑣 𝑥
)
1/2 𝜕

𝜕𝜂
   𝑤𝑖𝑡ℎ  

𝜕𝜂

𝜕𝑥
= −

𝜂

2𝑥
                    

This leads, with the previous relations, to: 

𝑢 =
𝜕Ψ

𝜕𝑦
= 𝑈∞ 𝑓

′(𝜂)

𝑣 = −
𝜕Ψ

𝜕𝑥
=
1

2
(
𝑣𝑈∞
𝑥
)

1
2
(𝜂𝑓′(𝜂) − 𝑓(𝜂))

}
 
 

 
 

                    

 

Where the prime denotes differentiation with respect to η. Substitution obove equation  into 

the boundary layer equations , reduces the problem, after much algebra, to a single third-order 

nonlinear ordinary differential equation for  f : 

𝑓′′′ + 1 2⁄ 𝑓 𝑓′′ = 0          𝐵𝑙𝑎𝑠𝑖𝑢𝑠 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛  
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The boundary conditions become:  

𝑎𝑡 𝑦 = 0,   𝑓 = 0,  𝑓′ = 0                         𝜂 = ∞, 𝑓′ = 1        

This is the Blasius equation, for which accurate solutions have been obtained only by 

numerical integration. 

4.3 Laminar flow 

Since 𝑢 𝑈⁄ approaches to 1.0 only as → 𝑦∞  , it is customary to select the boundary layer 

thickness  𝛿 as that point where 𝑢 𝑈⁄ = 0.99. 𝛿 occurs at 𝜂 ≈ 5  

𝛿99% (
𝑈

𝑣𝑥
)
1/2

≈ 5            
𝛿

𝑥
≈

5

𝑅𝑒𝑥
1/2

 

 

With the profile known, Blasius, of course, could also compute the wall shear and 

displacement thickness: 

𝐶𝑓 =
0.664

𝑅𝑒𝑥
1/2
               

𝛿∗

𝑥
=
1.721

𝑅𝑒𝑥
1/2

 

 

Notice how close these are to our integral estimates. When 𝐶𝑓 is converted to dimensional 

form, we have: 

𝜏𝑤(𝑥) =
0.332 𝜌1/2𝜇1/2𝑈1.5

𝑥1/2
 

 

The drag increases only as the square root of the plate length. The nondimensional drag 

coefficient is defined as: 

𝐶𝐷 =
2𝐷(𝐿)

𝜌 𝑈2 𝑏 𝐿
=
1.328

𝑅𝑒𝑥
1/2

= 2𝐶𝑓(𝐿)  

 

Thus, for laminar plate flow, CD equals twice the value of the skin friction coefficient at the 

trailing edge. This is the drag on one side of the plate. Kármán pointed out that the drag could 

also be computed from the momentum relation . In dimensionless form becomes: 

𝐶𝐷 =
2

𝐿
∫

𝒖

𝑼
(𝟏 −

𝒖

𝑼
)  𝒅𝒚

𝜹

𝟎

 

 

This can be rewritten in terms of the momentum thickness at the trailing edge: 

𝐶𝐷 =
2𝛿2(𝐿)

𝐿
 

 Computation of θ from the profile u/U or from CD gives 
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𝛿2
𝒙
=
0.664

𝑅𝑒𝑥
1/2
                 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑎𝑡 𝑝𝑙𝑎𝑡  

4.5 Turbulent Flow 

There is no exact theory for turbulent flat-plate flow, although there are many elegant 

computer solutions of the boundary layer equations using various empirical models for the 

turbulent eddy viscosity. 

Assuming δ = 0 at x = 0: 

𝑅𝑒𝛿 ≈ 0.16 𝑅𝑒𝑥
6/7

 

Thus the thickness of a turbulent boundary layer increases as x 6/7 , far more rapidly than the 

laminar increase x 1/2 . 

The friction variation: 

𝐶𝑓 ≈
0.027

𝑅𝑒𝑥
1/7
    

The drag coefficient:  

𝐶𝐷 =
0.031

𝑅𝑒𝐿

1
7

=
7

6
 𝐶𝑓(𝐿)                 

Then CD is only 16 percent greater than the trailing-edge skin friction coefficient (compare 

with laminar flow). 

4.6 Reynolds Number and Geometry Effects 

In Figure(4.3) a uniform stream U moves parallel to a sharp flat plate of length L. If the 

Reynolds number UL/ν is low (Fig. 7.1a), the viscous region is very broad and extends far 

ahead and to the sides of the plate. The plate retards the oncoming stream greatly, and small 

changes in flow parameters cause large changes in the pressure distribution along the plate 
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Fig. 4.3 Comparison of flow past a sharp flat plate at low and high Reynolds numbers: 

(a) laminar, low-Re flow; (b) high-Re flow. 

 

4.3 The thickness of the boundary layer 

For flow along a flat plate this definition translates to: 

𝛿 = 𝛿0.99 ≃ 5 𝑥 𝑅𝑒
−1/2          Blasius equation (1908) 

 

We define the boundary layer thickness δ as the locus of points where the velocity u parallel 

to the plate reaches 99%of the external velocity U.  

  

 

 

 

Fig 4.4 Definition of displacement thickness𝜹𝟏 
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Areas A and A’ are equal:  

𝑨 = 𝑨′∫ (𝑼𝒆 − 𝒖)  𝒅𝒚
𝜹

𝟎

 

 

The displacement thickness then allows us to describe the flow deficit Qp − Qv as if the flow 

near the wall were in perfect fluid: 

∫ (𝑼𝒆 − 𝒖)  𝒅𝒚
𝒉→∞

𝟎

=  𝑼𝒆   𝜹𝟏 

 
Et, 

𝜹𝟏 = ∫ (𝟏 −
𝒖

𝑼𝒆
)  𝒅𝒚

𝒉→∞

𝟎

 

 

Then, The quantity 𝜹𝟏 is called the displacement thickness of the boundary layer. To relate it 

to 𝒖(𝒚) 

 
Kármán’s Analysis of the Flat Plate 

 

Equation below was derived in 1921 by Kármán, who wrote it in the convenient form of the 

momentum thickness  δ2: 

𝑼𝟐 𝜹𝟐 = ∫ 𝒖(𝑼 − 𝒖)
𝒉→∞

𝟎

  𝒅𝒚 

 

𝜹𝟐 = ∫
𝒖

𝑼
(𝟏 −

𝒖

𝑼
)  𝒅𝒚

𝜹

𝟎
   

Momentum thickness is thus a measure of total plate drag. Kármán then noted that the drag 

also equals the integrated wall shear stress along the plate: 

 

and the thickness in energy δ3 : 

𝑼𝟐 (𝑼 𝜹𝟐) = ∫ 𝒖(𝑼𝟐 − 𝒖𝟐)
𝒉→∞

𝟎

  𝒅𝒚 

𝜹𝟑 = ∫
𝒖

𝑼
(𝟏 −

𝒖𝟐

𝑼𝟐
)  𝒅𝒚

𝒉→∞

𝟎
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Useful formulations: These definitions allow us to draw the following formulas: 

𝛿2 = 𝛼1𝛿,  𝛼1 = ∫ 𝑓(1 − 𝑓)𝑑𝜂, 𝛿1 =  𝛼2𝛿,  𝛼2 = ∫ 𝑓(1 − 𝑓)𝑑𝜂
1

0

 
1

0

 

4.4 Von Karman integral equation 

The Calculation results for the boundary layer on a flat plate at zero pressure gradient based 

on the theory of approximate solutions.  

Reference: Schlichting, Boundary–Layer Theory, McGraw–Hill Book, New York (1966). 

 

 

𝛽1 = 𝑓
′(0), 𝐶𝑥 (

𝐶𝑋𝑙

𝑣
)
1/2

= 2𝛿2 (
𝑈∞𝑙

𝑣𝑥
)
1/2

 

𝑑𝛿2
𝑑𝑥

=
𝜏𝑝

𝜌𝑈𝑒2
−
1

𝑈𝑒

𝑑𝑈𝑒
𝑑𝑥

(2𝛿2 + 𝛿1) =
1

2
𝐶𝑓 −

𝛿2
𝑈𝑒

𝑑𝑈𝑒
𝑑𝑥

(𝐻 + 2) 

 

Where  𝐻 =
𝛿1
𝛿2
⁄  is known as the shape parameter. This relation provides a differential 

equation for the boundary layer thickness provided that a suitable shape for the velocity 

profile is assumed. 

Kármán arrived at what is now called the momentum integral relation for flat-plate boundary 

layer flow: 
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Chapitre 5 : Turbulent flow 

5.1 Introduction in turbulent flow 

Turbulent flows are part of everyday experience: the jet of water from the tap, the sills of a 

boat (if the speed is sufficient), the flows around a car, etc. 

Indeed, given the adhesion of the fluid to the wall, the turbulence disappears there. But by 

moving away from the wall, the macroscopic agitation movements can develop more and 

more freely, so that turbulent diffusion prevails over molecular (viscous) diffusion and 

subsequently turbulence intensifies the mixing (the spatial “homogenization”) of the 

properties. Hence a more uniform speed distribution in a turbulent regime compared to the 

laminar regime. 

 
Fig 5.1 Development of the boundary layer on a flat plate. 

5.2 Characteristics of turbulent flows 

Turbulent flows arise when the driving force (or source of kinetic energy) that sets the 

fluid in motion is relatively intense compared to the viscosity forces that the fluid opposes to 

move. The driving force can take several forms: 

• pressure gradients 

• initial impulse for jets 

• an Archimedean force (buoyancy) due to a temperature difference in the gravity field. 

A turbulent flow leads to: 

a. the reduction of kinematic, thermal, mass inhomogeneities within the flow, while 

increasing parital transfers. This is reflected in what is called turbulent diffusion; 

b. the increase in viscous friction drag, possible reduction in form drag (related to 

pressure), by delaying possible separations; 

c. promoting the mixing of a dispersed phase, but which can also cause the coalescence 

of droplets in two-phase flows. 
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Turbulent flows are characterized by different length scales: 

a. Overall motion scale, L, corresponding to the “average” or “global” evolution of the 

flow, 

b. Turbulent agitation motion scale, ℓ, reflecting vortices actually present in the flow,  

c. Molecular agitation motion scale, lm, reflecting only macroscopic effects in a 

continuous medium type approach 

 

We define “turbulent diffusivities” which are a priori functions of the flow. This leads to 

defining:  

a. a velocity scale 𝑢′ ,  

b. a length scale l from which we deduce the order of magnitude of a diffusivity by 

turbulent diffusion 𝑣𝑇 : 

𝑣𝑇~𝑢′×𝑙 

 

Thus, the ratio to the diffusivity ν of the fluid: 
𝑣𝑇

𝑣
~
𝑢′×𝑙

𝑣
= 𝑅𝑒𝑇 

 

Which is a Reynolds number of turbulence included between  102 < 𝑅𝑒𝑇 < 10
7 

 

To highlight the relative effect of turbulent diffusion versus molecular diffusion, we consider 

the boundary layer on a semi-infinite flat plate. Although the thickness of the laminar 

boundary layer δ(x) of Blasius is given by the parabolic evolution: 

𝛿(𝑥) ≈ 5 𝑥 𝑅𝑒𝑥
−1/2

= 5(𝑣/𝑈𝑒)
1/2 𝑥1/2,           𝑅𝑒𝑥 = 𝑈𝑒 𝑥/𝑣 

 

The evolution of the thickness of the boundary layer in turbulent regime follows a thickening 

law in 𝑥4/5 

𝛿(𝑥) = 0.37 𝑥 𝑅𝑒𝑥
−1/5

= 0.37(𝑣/𝑈𝑒)
1/5 𝑥4/5 

 

 

 

Fig 5.2 “turbulent diffusion acts as an “activator” of molecular diffusion, 

5.4 Mean motion and fluctuations in incompressible flow 
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To describe turbulent motion it is convenient to decompose the motion into a mean motion 

into a fluctuation motion, or eddy motion. 

 
Fig 5.3 velocity signal mesured at given position  

 

𝑢 = 𝑢̅ + 𝑢′,     𝑣 = 𝑣 + 𝑣′, 𝑤 = 𝑤̅ + 𝑤,       𝑃 = 𝑃̅ + 𝑃′ 

 

In the case of compressible turbulent flow, it is also necessary to pose 

𝜌 = 𝜌̅ + 𝜌′, 𝑇 = 𝑇̅ + 𝑇′ 

The time average is calculated at a fixed point in space and given, for example, by: 

𝑢̅ =
1

𝑡1
∫ 𝑢 𝑑𝑡
𝑡0+𝑡1

𝑡0

 

 

or the interval t1 is long enough so that:𝑢′̅ = 𝑣 ′̅ = 𝑤′̅̅ ̅ = 𝑃′̅ = 𝜌′̅ = 𝑇 ′̅ = 0 

 

Before establishing the equations for the turbulent boundary layer it is useful to recall the 

rules to follow for the calculation of the average quantities 

𝑓̿ = 𝑓,̅   𝑓 + 𝑔̅̅ ̅̅ ̅̅ ̅ = 𝑓̅ + 𝑔̅,     𝑓.̅ 𝑔̅̅ ̅̅ ̅ = 𝑓.̅ 𝑔̅ ,       
𝜕𝑓 ̅

𝜕𝑆
=
𝜕 𝑓̅

𝜕𝑆
,    ∫ 𝑓 𝑑𝑆
̅̅ ̅̅ ̅̅ ̅̅ ̅

= ∫𝑓̅ 𝑑𝑆 

 

or S represents one of the variables x, y, z or t. Let us apply these formulas to flux quantities, 

for example, 𝑣𝑖. 𝑣𝑗̅̅ ̅̅ ̅̅  ou  𝑣𝑖 = 𝑢, 𝑣 𝑜𝑟 𝑤 

 

 

𝑣𝑖 . 𝑣𝑗 = (𝑣𝑖̅ + 𝑣𝑖
′)(𝑣𝑗̅ + 𝑣𝑗

′) = 𝑣𝑖̅ 𝑣𝑗̅ + 𝑣𝑖̅𝑣𝑗
′ + 𝑣𝑖

′𝑣𝑗̅ + 𝑣𝑖
′𝑣𝑗
′ 

Which leads to: 

𝑣𝑖. 𝑣𝑗̅̅ ̅̅ ̅̅ = 𝑣𝑖̅ 𝑣𝑗̅ + 𝑣𝑖′𝑣𝑗′̅̅ ̅̅ ̅̅  

5.5 Equations of motion and the Reynolds stress tensor 

To determine the equations governing the mean motion we first take up the incompressible 

Navier–Stokes equations in Cartesian coordinate systems: 
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𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

 𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑥
+ 𝜇Δ𝑢

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑦
+ 𝜇Δ𝑣

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜇Δ𝑤

 

Next, we multiply the continuity equation by ρu and then add the result to the equations above 

so we get: 

 

𝜌 (
𝜕𝑢

𝜕𝑡
+
𝜕(𝑢2)

𝜕𝑥
+
𝜕(𝑣 𝑢)

𝜕𝑦
+
𝜕(𝑤 𝑢)

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑥
+ 𝜇Δ𝑢 

In the same way he comes 

𝜌 (
𝜕𝑣

𝜕𝑡
+
𝜕(𝑢 𝑣)

𝜕𝑥
+
𝜕(𝑣2)

𝜕𝑦
+
𝜕𝑤𝑣

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑦
+ 𝜇Δ𝑣 

𝜌 (
𝜕𝑤

𝜕𝑡
+
𝜕(𝑢 𝑤)

𝜕𝑥
+
𝜕(𝑣 𝑤)

𝜕𝑦
+
𝜕(𝑤2)

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑧
+ 𝜇Δ𝑤 

 

Let us replace u, v and p respectively by u + u ′ , v + v ′ and p + p ′ and then take the time 

average of the equations thus found. 

the Navier–Stokes equations for steady-state turbulent flows: 

 

𝜕𝑢̅

𝜕𝑥
+
𝜕𝑣̅

𝜕𝑦
+
𝜕𝑤̅

𝜕𝑧
= 0 

 𝜌 (𝑢̅
𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
+ 𝑤̅

𝜕𝑢̅

𝜕𝑧
) = −

𝜕𝑃̅

𝜕𝑥
+ 𝜇Δ𝑢̅ − 𝜌 (

𝜕(𝑢′2̅̅ ̅̅ )

𝜕𝑥
+
𝜕(𝑣′ 𝑢′̅̅ ̅̅ ̅̅ )

𝜕𝑦
+
𝜕(𝑤′ 𝑢′̅̅ ̅̅ ̅̅ )

𝜕𝑧
) 

𝜌 (𝑢̅
𝜕𝑣̅

𝜕𝑥
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦
+ 𝑤̅

𝜕𝑣̅

𝜕𝑧
) = −

𝜕𝑃̅

𝜕𝑦
+ 𝜇Δ𝑣̅ − 𝜌 (

𝜕(𝑢′ 𝑣′̅̅ ̅̅ ̅̅ )

𝜕𝑥
+
𝜕(𝑣′2̅̅ ̅̅ )

𝜕𝑦
+
𝜕𝑤′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑧
) 

𝜌 (𝑢̅
𝜕𝑤̅

𝜕𝑥
+ 𝑣̅

𝜕𝑤̅

𝜕𝑦
+ 𝑤̅

𝜕𝑤̅

𝜕𝑧
) = −

𝜕𝑃̅

𝜕𝑧
+ 𝜇Δ𝑤̅ − 𝜌 (

𝜕(𝑢′ 𝑤′̅̅ ̅̅ ̅̅ )

𝜕𝑥
+
𝜕(𝑣′ 𝑤′̅̅ ̅̅ ̅̅ )

𝜕𝑦
+
𝜕(𝑤′2̅̅ ̅̅̅)

𝜕𝑧
) 

 

At this stage a precise examination of these terms and a comparison with the stress tensor is 

necessary. It allows us to realize quite quickly that they represent components of the stress 

tensor due to the turbulent velocity: 

 

(

𝜎𝑥𝑥
′ 𝜎𝑥𝑦

′ 𝜎𝑥𝑧
′

𝜎𝑥𝑦
′ 𝜎𝑦𝑦

′ 𝜎𝑦𝑧
′

𝜎𝑥𝑧
′ 𝜎𝑦𝑧

′ 𝜎𝑧𝑧
′

) = (

𝜎𝑥𝑥
′ 𝜏𝑥𝑦

′ 𝜏𝑥𝑧
′

𝜏𝑥𝑦
′ 𝜎𝑦𝑦

′ 𝜏𝑦𝑧
′

𝜏𝑥𝑧
′ 𝜏𝑦𝑧

′ 𝜎𝑧𝑧
′

) = −𝜌(
𝑢′2̅̅ ̅̅ 𝑣′ 𝑢′̅̅ ̅̅ ̅̅ 𝑤′ 𝑢′̅̅ ̅̅ ̅̅

𝑢′ 𝑣′̅̅ ̅̅ ̅̅ 𝑣′2̅̅ ̅̅ 𝑤′𝑣′̅̅ ̅̅ ̅̅

𝑢′ 𝑤′̅̅ ̅̅ ̅̅ 𝑣′ 𝑤′̅̅ ̅̅ ̅̅ 𝑤′2̅̅ ̅̅̅
) 

 

We rewrite the equations in the form: 
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𝜌 (𝑢̅
𝜕𝑢̅

𝜕𝑥
+ 𝑣̅

𝜕𝑢̅

𝜕𝑦
+ 𝑤̅

𝜕𝑢̅

𝜕𝑧
) = −

𝜕𝑃̅

𝜕𝑥
+ 𝜇Δ𝑢̅ + 𝜌 (

𝜕(𝜎𝑥𝑥
′ )

𝜕𝑥
+
𝜕(𝜏𝑥𝑦

′ )

𝜕𝑦
+
𝜕(𝜏𝑥𝑧

′ )

𝜕𝑧
) 

𝜌 (𝑢̅
𝜕𝑣̅

𝜕𝑥
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦
+ 𝑤̅

𝜕𝑣̅

𝜕𝑧
) = −

𝜕𝑃̅

𝜕𝑦
+ 𝜇Δ𝑣̅ + 𝜌 (

𝜕(𝜏𝑥𝑦
′ )

𝜕𝑥
+
𝜕(𝜎𝑦𝑦

′ )

𝜕𝑦
+
𝜕𝜏𝑦𝑧

′

𝜕𝑧
) 

𝜌 (𝑢̅
𝜕𝑤̅

𝜕𝑥
+ 𝑣̅

𝜕𝑤̅

𝜕𝑦
+ 𝑤̅

𝜕𝑤̅

𝜕𝑧
) = −

𝜕𝑃̅

𝜕𝑧
+ 𝜇Δ𝑤̅ + 𝜌 (

𝜕(𝜏𝑥𝑧
′ )

𝜕𝑥
+
𝜕(𝜏𝑦𝑧

′ )

𝜕𝑦
+
𝜕(𝜎𝑧𝑧

′ )

𝜕𝑧
) 

 

 

In short, in index notations, the interpretation of the mean field and fluctuation can be 

illustrated as follows: 

𝜕𝑢𝑖̅
𝜕𝑥𝑖

= 0 

𝜌
𝐷𝑢𝑖̅
𝐷𝑡⏟  

𝑓𝑜𝑟𝑐𝑒 𝑚𝑜𝑦𝑒𝑛𝑛𝑒 
𝑑′𝑖𝑛𝑒𝑟𝑡𝑖𝑒

=
𝜕𝑃̅

𝜕𝑥𝑖⏟
𝑓𝑜𝑟𝑐𝑒 𝑚𝑜𝑦𝑒𝑛𝑛𝑒 𝑑𝑒 

𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

+ 𝜌𝑓𝑖̅⏟
𝑓𝑜𝑟𝑐𝑒 𝑚𝑜𝑦𝑒𝑛𝑛
𝑒 𝑑𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

+ 𝜇
𝜕2𝑢𝑗̅

𝜕𝑥𝑖𝜕𝑥𝑗⏟    
𝐹𝑜𝑟𝑐𝑒 𝑑𝑒 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡é

−
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)

⏟      
𝑇𝑒𝑛𝑠𝑖𝑜𝑛 𝑑𝑒 
𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠

 

5.6 Modelisation of turbulence 

Direct Numerical Simulations (DNS) 

Solving (numerically) the Navier-Stokes equations “directly”. without any turbulence models. 

a. Very fine resolutions (both spatial and temporal) are required to resolve the motion of 

all eddies sufficiently.  

b. Can be performed only for relatively low Re flows, i.e. cannot be used for most 

engineering flows.  

c. Used mainly in academic research, to obtain the “exact” solutions of basic turbulent 

flows (this can be used for validation of turbulence models).  

d. Also used to study detailed mechanisms of laminar-to-turbulent transition, combustion, 

bubble production, etc. • Sometimes called numerical experiments. 

 

a. Reynolds Stress Models(RSM) 

Modelling each of 6 Reynolds stress components induvidually, deriving and soliving a 

transport equation for each of the 6 components. Required relatively high computational 

cost. 

b. Eddy viscosity models(EVM) 

Modelling each of 6 Reynolds stress components all together, assuming a similarity 

between the viscous stress( due to viscosity) and Reynolds stress( due to turbulence). 

Requires relatively low computational cost. 

 

5.7 Eddy viscosity models(EVM) 

Eddy viscosity models are often classified into the following 3 groups, depending on how 

many “model transport equations” are solved to estimate 𝑣𝑡. 
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Zero- equation (or algebric) models 

a. Prandtl’s mixing length model(1925); 

b. Cebeci- Smith model(1967); 

c. Baldwin-Lomax model(1978) …ect 

One- Equation models 

a. Prandtl’s one equation model(1945) 

b. Baldwin Barth model(1990) 

c. Spalart allmaras model(1994) ..ect 

 

Two equation models(most commonly used) 

a. 𝑘 − 𝜀 models(Lunder & Spalding 1974) 

b. 𝑘 − 𝜔 models( Wilcox 1988, 1993, 1998) 

c. Hybrid models (𝑘 − 𝜔 𝑆𝑆𝑇 model by Menter 1994) 
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Chapter 6: Calculation of flow in pipes 

6.1 Pressure losses: application to real fluids 

The head loss in Bernoulli’s equation represents the reduction in the total pressure, 

which is the sum of the velocity head, pressure head, and the elevation head of the fluid 

flowing through the hydraulic system. 

There are two types of pressure losses, linear pressure losses related to length and singular 

losses related to changes in the shape of the fluid flow circuit (variation of the fluid passage 

section). 

6.2 Singular pressure losses 

This type of pressure loss is linked to specific accidents (change in the shape of pipes), 

for example sudden or gradual widening and narrowing, bends, shapes (U, T and Y) valves, 

taps, flaps, etc.. 

They are expressed) from a dimensionless load loss coefficient noted by: 

"𝑱𝑺" and given by the following formula: 

𝑱𝑺 = 𝝃
𝒗𝟐

𝟐𝒈
 

with : 

𝜉 : Coefficient of singular load losses, 

v: average flow velocity at the passage section considered, 

g : gravitational acceleration 

The coefficient ξ is determined explicitly for some cases (or by empirical formulas), or 

incurred by abacuses. We can retain some examples of the cases below: 

Abrupt widening: 𝝃 = (𝟏 −
𝑺𝟏

𝑺𝟐
)
𝟐

 

Abrupt contraction: 𝝃 = 𝟎. 𝟒𝟓 (𝟏 −
𝑺𝟐

𝑺𝟏
)
𝟐

 

Elbow 90° : 𝝃 = 0.8 

Open valve: 𝝃 = 1.2 

6.3  Linear or friction pressure losses for the different 

flow types: ( Formula of Colebrook: Moody diagram). 

This type of loss is caused by the internal friction that occurs in liquids; it occurs in smooth 

pipes as well as in rough pipes. 
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Between two points separated by a length L, in a pipe of diameter D there appears a pressure 

loss p. expressed in the following form: 

Let us use Poiseuille's result to express the pressure loss by involving the diameter D, the 

length L, the average speed as well as the density and the Reynolds number:  

  

   𝐐 =
𝚫𝐏𝐫 𝛑

𝟖𝛍𝐋
𝐑𝟒 ⇒𝚫𝐏𝐫 =

𝐐 𝟖 𝛍 𝐋

𝛑𝐑𝟒
=
𝐯 𝛑 𝐑𝟐 𝟖 𝛍 𝐋

𝛑𝐑𝟒
=
𝐯𝟖𝛍𝐋 

𝐑𝟐
= 

𝐯𝟖𝛍𝐋

𝐃

𝟐

𝟐 =
𝟑𝟐𝐯𝛍𝐋 

𝐃𝟐
                  

The Reynolds number of this laminar flow is written as:  𝑹𝒆 =
𝛒 𝐕 𝐃 

𝛍
 

so  

⇒𝚫𝐏𝐫 =
𝟏

𝟐

𝟔𝟒  𝐋
𝛒 𝐕 𝐃

𝛍

 𝛒 𝐕𝟐 
𝐋

𝐃
=
𝟔𝟒

𝐑𝐞
 
𝟏

𝟐
 𝛒 𝐕𝟐 

𝐋

𝐃
=  𝛌 

𝟏

𝟐
 𝛒 𝐕𝟐 

𝐋

𝐃
   (𝐏𝐚)  

 

(Formula of Darcy-Weisbach) 

with: 𝝀=𝟔𝟒/𝑹𝒆 

We define the linear pressure loss: 

𝚫𝐇 =
𝚫𝐏𝐫

𝛒 𝐠
=  𝛌 

𝟏

𝟐𝐠
  𝐕𝟐 

𝐋

𝐃
   (𝐏𝐚) Pressure loss expressed in meters of fluid column (mFC) 

𝜆 is a dimensionless coefficient called the linear pressure loss coefficient. 

The calculation of pressure losses is based entirely on the determination of this coefficient. 

Laminar flow case : Re < 2000 

In this case we note that the pressure loss coefficient is only a function of the Reynolds 

number Re; the state of the surface does not intervene and therefore does not depend on the 

nature of the piping. 

𝝀 =
𝟔𝟒

𝐑𝐞
   ( Poiseuille law) 

With , 𝑹𝒆 =
𝛒 𝐕 𝐃 

𝛍
 

Flow case  2000 < Re < 105 

In this case, the turbulence is still moderate, the pipe surface is still considered smooth. Here 

again λ only depends on Re 

𝜆= (100 𝑅𝑒)-0.25  (Formule de Blasius) 

𝟏

√𝝀
= 𝟐 𝒍𝒐𝒈 (

𝑹𝒆 √𝝀

𝟐,𝟓𝟏
) (Von Karman implicit formula) 

Flow case: Re > 105 

The turbulence becomes very significant and 𝜆 only depends on 𝜀/𝐷 
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𝟏

√𝝀
= 𝟐 𝒍𝒐𝒈 (𝟑, 𝟕𝟏

𝜺

𝑫
)  (Formula of Nikuradse) 

with, 𝜀 average height of the asperities of the pipe surface or absolute roughness, 𝜀/𝐷 étant la 

relative roughness, and 𝐷 section diameter. 

Note: 

The Colebrook formula is currently considered to be the one that best reflects flow 

phenomena in turbulent conditions. It is presented in the following form: 

𝟏

√𝝀
= −𝟐 𝒍𝒐𝒈(

𝜺

𝟑.𝟕 𝑫
+

𝟐,𝟓𝟏

𝑹𝒆 √𝝀
) Formula of Colebrook 

 

6.6 Moody diagram. 

In 1944,Lewis Ferry Moody plotted theDarcy- Weisbach friction factor againt 

Reynolds number Re for various values of roughness 𝜀 𝐷⁄   

The Moody friction factor  𝝀  is used in the Darcy-Weisbach major loss equation. The 

coefficient can be estimated with the diagram below: 

 
Fig 6.Moody diagram 
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6.7 Introduction to one-dimensional flow of compressible fluids 

If the flow is transient - 2300 < Re < 4000 - the flow varies between laminar and turbulent 

flow and the friction coefiicient is not possible to determine. The friction factor can usually be 

interpolated between the laminar value at Re = 2300 and the turbulent value at Re = 4000  

6.7.1 Fundamental equations 

6.7.1.1  Mass conservation equation 

𝒎̇ = 𝑪. 𝝆. 𝑨            (
𝒌𝒈

𝒔⁄ ) 

 

𝑚̇: Mass flow rate through a given section A, for steady flow. 

𝑚 = 𝑐𝑠𝑡̇  ,  𝑚̇ =
𝐴 .𝐶

𝑣
, 𝑚̇ . 𝑣 = 𝐴. 𝐶 

𝑚̇

𝐴
= 𝜌 . 𝐶 = ℊ𝑚 : Specific mass flow rate. 

If  A=cst so ℊ𝑚 = 𝑐𝑠𝑡   𝜌. 𝐶 = 𝑐𝑠𝑡 

6.7.1. 2  Equation of motion 
Following Newton's principle 

𝐹 = 𝑚⏟
𝑚𝑎𝑠𝑠𝑒

  .
𝑑𝐶

𝑑𝑡⏟
𝑎𝑐𝑐é𝑙é𝑟𝑎𝑡𝑖𝑜𝑛 

 

(𝑃 − 𝑃 − 𝑑𝑃). 𝐴⏟          
𝑓𝑜𝑟𝑐𝑒

= 𝜌. 𝐴. 𝑑𝑥⏟    
𝑚𝑎𝑠𝑠𝑒

.  
𝑑𝑐

𝑑𝑡⏟
𝑎𝑐𝑐é𝑙é𝑟𝑎𝑡𝑖𝑜𝑛

 

With  :  
𝑑𝑥

𝑑𝑡
= 𝐶   we will have: −𝑑𝑃 = 𝜌. 𝑑 (

𝐶2

2
) 

Either :  
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−𝑣 𝑑𝑃 = 𝑑 (
𝐶2

2
) 

6.7.1.3  Energy equation 

According to the first law of thermodynamics 

                                                       𝑑𝑞 = 𝑑ℎ − 𝑣 𝑑𝑃 Mais  −𝑣 𝑑𝑃 = 𝑑 (
𝐶2

2
) 

⇒ 𝑑 (
𝐶2

2
) + 𝑑ℎ = 0  Or as an integral 

𝐶2

2
+ ℎ = 𝑐𝑠𝑡 : equation of conservation of energy. 

                                                       We know that    ℎ = 𝑐𝑝. 𝑇  and  𝑐𝑝 =
𝛾

𝛾−1
 𝑟 

⇒
𝐶2

2
+

𝛾

𝛾 − 1
 𝑟. 𝑇 = 𝑐𝑡𝑒 

⇒
𝐶2

2
+

𝛾

𝛾 − 1
 
𝑃

𝜌
= 𝑐𝑡𝑒 

 

6.7.2 Stagnation parameters and generating parameters 

6.7.2.1 generating state 

The characteristics inside this reservoir are then those of the generating state, this 

representation justifies the name “generating state”, it is characterized by the index i. 

 

 

 

 

 

 

Fig 6.3 Stagnation parameters and generating parameters 

6.7.2.2  Stagnation state 

 

Genating case                                                   stagnation case 
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Let a breakpoint be defined in the following figure: 

𝐶2

2
+ ℎ = 𝑐𝑠𝑡 = ℎ0 = ℎ𝑖 = 𝑐𝑝𝑇0 

⇒ 𝑇0 = 𝑇 +
𝐶2

2𝑐𝑝
      → Stagnation temperature 

This is the temperature that will be measured with a thermometer fixed in the flow. 

as ℎ0 = cte donc 𝑇0 = 𝑐𝑠𝑡 (identical in each section of the flow). 

ℎ0 : Stagnation enthalpy. 

𝑇0

𝑇
= 1 +

𝐶2

2ℎ
    and         ℎ = 𝑐𝑝. 𝑇 =

𝛾

𝛾−1
 𝑟
𝑎2

𝛾 𝑟
=

𝑎

𝛾−1
 

𝑇0
𝑇
= 1 +

𝛾 − 1

2
𝑀2 

𝑃0
𝑃
= (1 +

𝛾 − 1

2
𝑀2)

𝛾
𝛾−1⁄

 

𝜌0
𝜌
= (1 +

𝛾 − 1

2
𝑀2)

1
𝛾−1⁄

 

In case the gas flows from the medium where the initial velocity 𝐶0 is negligible compared to 

the speed in the section considered C, we have : 

𝐶2

2
−
𝐶𝑖
2

2
= ℎ𝑖 − ℎ ⇒ 𝐶 = √2(ℎ𝑖 − ℎ) 

 

ℎ𝑖 : Enthalpie génératrice, ℎ𝑖 = 𝑐𝑝 𝑇𝑖   avec    𝑇𝑖 : generating temperature. 

𝑇𝑖 =
𝑃𝑖

𝜌𝑖 .𝑟
 ou  𝑃𝑖 : generating pressure, 𝜌𝑖 : generating density. 

- As    
𝐶2

2
+ ℎ = ℎ𝑖, we note that ℎ𝑖 = ℎ0 et 𝑇𝑖 = 𝑇0 

- - In an adiabatic flow the stopping enthalpy and the stagnation temperature are 

identified with the generating enthalpy and temperature, consequently: 

𝑃𝑖 = 𝑃0 et 𝜌𝑖 = 𝜌0 , so we write: 
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𝑇𝑖
𝑇
= 1 +

𝛾 − 1

2
𝑀2 

𝑃𝑖
𝑃
= (1 +

𝛾 − 1

2
𝑀2)

𝛾
𝛾−1⁄

 

𝜌𝑖
𝜌
= (1 +

𝛾 − 1

2
𝑀2)

1
𝛾−1⁄

 

6.7.3 Comparison with incompressible flow 

𝑷𝟎 − 𝑷 = 𝝆 
𝑪𝟐

𝟐
         ⟹         

𝑷𝟎−𝑷

 𝝆  𝑪𝟐

𝟐
⁄
= 𝟏 

For a compressible fluid in subsonic isentropic flow: 

𝑃𝑖
𝑃
= (1 +

(𝛾 − 1) 𝑀2

2  
)

𝛾
𝛾−1

 

𝑃𝑖

𝑃
= 1 +

𝛾

2
𝑀2+

𝛾

8
𝑀4+

𝛾(2−𝛾)

48
𝑀6+………. 

𝑃𝑖 − 𝑃 =
  𝑃𝛾 𝑀2

2
(1 +

𝑀2

4
+
2−𝛾

24
𝑀4) 

  
  𝑃𝛾 𝑀2

2
=
  𝑃𝛾 𝐶2

2 𝛾 𝑟𝑇
=
𝜌 𝐶2

2
 

where : 

𝑃𝑖−𝑃

𝜌 𝐶2
2
⁄
= 1 +

𝑀2

4
+
𝑀4

40
+

𝑀6

1600
+….. 

 

Hence the following table: 

M 0.1 0.2 0.3 0.4 0.5 

𝑃𝑖 − 𝑃

𝜌 𝐶2
2
⁄

 
1.003 1.010 1.023 1.041 1.064 

 

At low velocity  when 
𝑀2

4
< 1 Bernoulli's formula is modified: 
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𝑃𝑖 − 𝑃

𝜌 𝐶2
2
⁄

= 1 

𝑃𝑖 − 𝑃 =
𝜌 𝐶2

2
⁄    et    𝑃0 − 𝑃 =

𝜌 𝐶2

2
⁄  

 

 

⇒ 𝑃0 = 𝑃𝑖 = 𝑃 +
𝜌 𝐶2

2
⁄    Bernoulli's formula for incompressible fluid. 

𝜌 𝐶2

2
⁄  : Dynamic pressure 

As  
𝜌0

𝜌
= (1 +

𝛾−1

2
𝑀2)

1

𝛾−1
 si   

𝛾−1

2
𝑀2 < 1 

𝜌0

𝜌
≈ 1 +

𝑀2

2
+⋯ The relative variation in density between the upstream state and any section. 

𝜌0
𝜌

− 1 =
𝜌0 − 𝜌

𝜌
=
𝑀2

2
=
𝜌𝑖 − 𝜌

𝜌
 

 

for :  

M=0.1  
𝜌0−𝜌

𝜌
= 0.5% 

M=0.14  
𝜌0−𝜌

𝜌
= 1% 

M=0.2  
𝜌0−𝜌

𝜌
= 2% 

 

6.7.4 Formula of Barré- saint venant 

Given the results concerning the velocity calculation in the form,  

𝐶 = √2(ℎ0 − ℎ ) 

We can give it an expression called « formula of Barré-saint venant » 
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𝐶 = √2 𝑐𝑝 (𝑇0 − 𝑇 ) = √2 𝑐𝑝𝑇0 (1 −
𝑇

𝑇0
) 

𝐶 =√2 
𝛾

𝛾−1
 

        

𝐶 = √
2𝛾 

𝛾−1

𝑃0

𝜌
(1 − (

𝑃

𝑃0
)

𝛾−1

𝛾
)  Formula of Barré- saint venant 

6.7.5  Critical parameters 

When gas expansion takes place in a pipeline, the sonic state separates regions of flow that are 

fully accessible (subsonic) and those that are not (supersonic) 

𝑀 = 1⇒
𝑇0
𝑇
= 1 +

𝛾 − 1

2
𝑀2 

     
⇒
𝑇0
𝑇
= 1 +

𝛾 − 1

2
(1)2 

     
⇒ 𝑇 = 𝑇𝐶 =

2

𝛾 + 1
𝑇0 

 

With  M=1 gives us the so-called critical temperature. 

𝑃𝐶
𝑃
= (

2

𝛾 + 1
)

𝛾
𝛾−1⁄

 

 

For the critical section  

𝐶𝑐   = 𝑎𝑐     = √𝛾 𝑟 𝑇𝑐      =√
2 𝛾

𝛾+1
𝑟 𝑇0       = √

2 𝛾

𝛾+1

𝑃0

𝜌0
 

 

The critical speed is a function of the nature of the gas and the generating (or stagnation state) 

conditions.As 𝑎0 = √𝛾 𝑟 𝑇0, we note that: 
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𝐶𝑐  = 𝑎𝑐  = √
2 𝛾

𝛾+1

𝑃0

𝜌0
    =√

2    𝛾 𝑟 𝑇0

𝛾+1
     =   𝑎0√

2 

𝛾+1
 

 

 

6.8 Introduction to free surface flow 

Free surface flows are flows that flow under the effect of gravity while being in partial 

contact with a container (canal, river, pipe) and with air whose pressure is generally at free 

surface. 

 
Fig 6.4 free surface flow 

 

Type of flow: A classification of flows can be made according to the variation of depth, h or 

dh, as a function of time and space: dh = f(t, x). 

The types of flow encountered in free surface hydraulics can be summarized as follows: 

1. Uniform flow 

2. Non-uniform flow: gradually varied and abruptly varied 

 

6.8.1 Flow regimes 

 The Froude number, which is the ratio of gravity to inertial forces or: 

𝑭𝒓 =
𝑽

√𝒈. 𝒉
 

river flow: 𝑭𝒓 < 𝟏   torrential flow: 𝑭𝒓 > 𝟏   critical flow: 𝑭𝒓 = 𝑭𝒓𝒄𝒓  

Uniform regime: 

- The flow is considered uniform if the height h is constant along the flow. 
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Fig 7.5 load plan of Uniform flow 

 

𝑺𝒘𝒆𝒕 = 𝒄𝒔𝒕, 𝑷𝒘𝒆𝒕 = 𝒄𝒔𝒕, 𝑹𝒉 =
𝑺𝒘𝒆𝒕
𝑷𝒘𝒆𝒕

, 𝒉 = 𝒄𝒔𝒕 

Uniform flow must satisfy the following conditions: 

1. The flow rate of the water is constant. 

2. The channel is prismatic. 

3. The slope of the invert is constant. 

4. The roughness of the channel is constant along the flow. 

5. The lines of the flow are parallel. 

6.8.2 Main calculation formulas 

1- Mean flow velocity: The main calculation formula for free surface flow is that of Chezy: 

Where: V: flow velocity. C: Chezy coefficient. R: hydraulic radius. i: the slope of the channel 

bottom (slope of the invert) To determine C, one of the following formulas can be used: 

formula of Bazin: 𝐶 =
87 √𝑅

Γ+√𝑅
 

Formula of Kutter: 𝐶 =
100√𝑅

𝜀+√𝑅
 

Formula of Maning:   𝐶 =
1

𝑛
𝑅1/6 

Γ , 𝜀 and n  are coefficients that depend on the roughness of the walls 

Γ = 0.16, 𝜀 = 0.2, 𝑛 = 0.0125 ⇒ 𝑏𝑟𝑖𝑐𝑘, 𝑠𝑡𝑜𝑛𝑒 𝑜𝑟 𝑏𝑜𝑎𝑟𝑑 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠  

 

The flow rate: 

𝑄 = 𝑉 × 𝑆 = 𝐶. 𝑆 √𝑅. 𝑖 

6.8.3 Non-uniform regime (varied permanent) 

Definition: When the trajectories of the different liquid streams flowing in a channel are not 

parallel to each other, we have a varied regime (the free surface and the bottom of the channel 

are not parallel). This type of movement occurs in a channel in the varied cross section (like 

natural watercourses) 
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Bernoulli's theorem: We apply Bernoulli's equation between the sections 1.1 et 2.2 

 
Fig 7.5 load plan of non- uniform flow 

 

 

𝑯𝟏 +
𝜶𝟏𝑽𝟏

𝟐

𝟐𝒈
= 𝑯𝟐 +

𝜶𝟐𝑽𝟐
𝟐

𝟐𝒈
+ ∆𝑯 

 

Exercises related to chapter 1 
 

EXERCISE 

Find the streamlines and equipotentials in the following cases: 

The complex potential is: f(z) = V.z where V is a real constant and Z = x +i y 

The complex potential is: f(z) = k ln(z) where k is a real constant 

 

Exercice 1 

We consider a permanent flow defined in a frame (0, x, y, z) by the following velocity field, 

in Euler variables:  

1) Show that the fluid is incompressible. 

2) Calculate the acceleration vector field. 

3) Determine the equations of the streamline network. 

4) Determine the strain rate tensor field.. 
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Solution 

 

The streamlines are defined by the equation: 

  

1) Show that the fluid is incompressible. 

We must show that  . 

We just need to check that the following equation is true: 

 

After a quick calculation we get: 

 

 

; ;  

The sum of these 3 terms is zero, the fluid is indeed incompressible. 

2) Calculate the acceleration vector field 

Acceleration is defined by: 

 

The flow is permanent hence  

 so   

After calculation we obtain: 
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2) Calculate the acceleration vector field 

Acceleration is defined by: 

 

The flow is permanent hence so   

The flow is permanent hence 

 

 

3) Determine the equations of the streamline  

The streamlines are defined by 

  

We have v=0. For this equation to be defined, dy=0 must be present. The flow is in the Oxz 

plane. 

We were going to transform this equation... 
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What gives us  

Then 

  

Finally 

3

2
𝑥2 +

3

2
𝑧2 − 2𝑥𝑧 = 𝑐𝑠𝑡  

4) Determine the strain rate tensor field. 

By definition the strain rate tensor is given by: 

𝐷̿ =
1

2

[
 
 
 
 
 
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦
+
𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦

𝜕𝑤

𝜕𝑧
+
𝜕𝑤

𝜕𝑧 ]
 
 
 
 
 
 

 

After simplification and a quick calculation, we obtain: 

𝐷̿ =
1

2
[
4 0 0
0 0 0
0 0 −4

] ⟶ 𝐷̿ = [
2 0 0
0 0 0
0 0 −2

]  

Exercice 2 

Find the streamlines and equipotentials in the following cases: 

The complex potential is: :   𝑓(𝑧) = 𝑉. 𝑧  where  𝑉 is a real constant and  z = x + iy. 

Solution  

So 𝑓(𝑧) = 𝑉. (x + iy)     

We have more   𝑓(𝑧) = Φ + 𝑖Ψ  avec Φ the potential functionet Ψ the stream function. 

We therefore obtain Φ = V. x and   Ψ = V. y 

The streamlines are given for Ψ = 𝑐𝑠𝑡  and the equipotentials are given for Φ = cst 
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Exercise 3 

Find the streamlines and equipotentials in the following cases: 

The complex potential is:   𝑓(𝑧) = 𝑘. ln (𝑧) where   𝑘 is a real constant. 

Solution  

Find the streamlines and equipotentials in the following case: 

The complex potential is: 𝑓(𝑧) = 𝑘. ln (𝑧)  where  𝑘 is a real constant. 

Using the polar coordinates,  we have 𝑓(𝑧) = 𝑘. ln (𝑟. 𝑒𝑖𝜃)  

From where 𝑓(𝑧) = 𝑘. 𝑙𝑛 𝑟 + 𝑘𝑖  𝜃  

Moreover 𝑓(𝑧) = Φ+ 𝑖Ψ  with Φ the potential function et Ψla fonction courant. 

We therefore obtain Φ = k. lnr  and  Ψ = 𝑘. θ 

The streamlines are given for Ψ = 𝑐𝑠𝑡  and the equipotentials are given for Φ = cst 

 

 



 

71 

 

Exercises related to chapter 2 
Exercise 1 (Draining a reservoir) 

Consider a reservoir whose fluid escapes through a narrow orifice. The tank is large enough to 

neglect the variations in the level of the free surface over time and to consider the permanent 

motion. The fluid is considered perfect. 

At the outlet, the jet has a contracted section where the streamlines are parallel and practically 

rectilinear. 

 
Question 

1 - Calculate the velocity at point M at the outlet of the orifice. 

2 - Calculate the draining time.  

Solution  

 

1 - Calculate the velocity at point M at the outlet of the orifice 

There is a streamline between point A located on the free surface and point M in the outlet 

section, so we can apply the Bernoulli relation between these two points: 

𝑃𝐴 + 𝜌 𝑔ℎ𝐴 + 𝜌
𝑉2𝐴

2
= 𝑃𝑀 + 𝜌 𝑔ℎ𝑀 + 𝜌

𝑉2𝐴

2
 

Considering the flow conditions, we have: 𝑃𝐴 = 𝑃𝑀 = 𝑃𝑎𝑡𝑚. Furthermore, since the section of 

the reservoir is large compared to that of the orifice, the velocity at A is negligible compared 

to that of M: VA = 0 (it is sufficient to apply the conservation of flow rate to realize this). By 

integrating these data into the equation, we obtain: 

 

𝑉 = √2 𝑔(ℎ𝐴 − ℎ𝑀)        ℎ𝐴 − ℎ𝑀 = 𝑧                  

We obtaine the Torricelli formula: 𝑉 = √2 𝑔 𝑧  
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2 - Calculate the emptying time 

We express that the volume evacuated during the time is equal to the decrease in volume in 

the reservoir, so: 

The volume evacuated during the time ∆𝑡 is equal to: qvdt   where qv is the volume flow rate. 

The decrease in volume in the reservoir is:  where  is the section of the reservoir 

and 𝑑ℎ  the height variation in the reservoir over time ∆𝑡 

The volume flow rate is equal to:𝒒𝒗 = 𝐶𝑐𝑉𝑆0 . In this expression This is the contraction 

coefficient (the section of the jet at the outlet is 𝐶𝑐𝑆0 and 𝑉 the fluid velocity at the orifice. 

Equality is written: 

 𝑐𝑐𝑆0𝑉 𝑑𝑡 = −𝑆 𝑑𝑡 

We obtain: 𝑑𝑡 = −
𝑆𝑑𝑧

𝑐𝑐𝑆0𝑉
 

Either by replacing 𝑉 with its value: 𝑉 

𝑑𝑡 = −
𝑆

𝑐𝑐𝑆0√2𝑔
 
𝑑𝑧

√𝑧
 

For a complete drain, the integration between ℎ𝐴 and zero gives: 

𝑡 =
𝑆

𝑐𝑐𝑆0√2𝑔
∫

𝑑𝑧

√𝑧

0

ℎ𝐴

=
𝑆

𝑐𝑐𝑆0√2𝑔
√ℎ𝐴  

Exercise 2 (Venturi tube) 

The venturi tube is a convergent-divergent tube equipped with static pressure tapping, one 

upstream of the convergent, the other at the neck (see figure). 

 

 

This tube is inserted into a pipe whose flow rate is to be measured. Water (incompressible 

perfect fluid) flows into the venturi and h is the difference in level in the tubes indicating the 

pressure. The speeds in 𝑆1 𝑎𝑛𝑑 𝑆2 are uniform. 

Question 
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1 - Calculate the fluid velocity in the contracted section as a function of the sections and and 

the pressure difference at and at . 

2 - Express the flow rate (in volume) of the pipe. 

1 - Calculate velocity𝑉2 of the fluid in the contracted section as a function of the 𝑆1 𝑎𝑛𝑑 𝑆2 of 

the difference in pressures 𝑃1at𝑆1 and 𝑃2at𝑆2 . 

2 - Express the flow rate (in volume) of the pipe 

Solution 

1 - Calculate the velocity 

𝑃1 𝑎𝑛𝑑 𝑃2the pressures in the sections and . We apply the Bernoulli relation: 

 

𝑧1 𝑎𝑛𝑑 𝑧2 are the respective coasts of the chosen streamline passing through the sections 

𝑆1 𝑎𝑛𝑑 𝑆2. 

Let's call et  the terms . with the conservation of volume flow , 

we obtain: 

 
2 - Express the flow rate in volume of the pipe. 

The flow rate of the pipe is given by the following formula:

 

Which gives us with  

 
Exercice 3 

We consider a horizontal pipe, of constant section, of length l, supplied by a large reservoir 

where the level is kept constant. At the end of the pipe, a valve regulates the flow. At time t = 

0, the valve is closed and is opened abruptly. 

http://ressources.unisciel.fr/mecaflux/co/Chap3_exo2.html


 

74 

 

 
Question 

Establish the relationship between the flow establishment time and the maximum fluid 

velocity. 

Solution 

Establish the formula between the flow establishment time and the maximum fluid velocity. 

At a point at distance x from O, the Bernoulli formula in non-steady state is written:

 

La section du tuyau est constante donc V et 𝜕𝑉 𝜕𝑡⁄ ont la même valeur le long du tuyau. En 

, la relation précédente s'écrit donc :  

 

Since V only depends on time, we can write𝜕𝑉 𝜕𝑡⁄ = 𝑑𝑉 𝑑𝑡⁄   . The equation therefore 

becomes: 

 

By integrating, we obtain: 

 

The previous integration shows a constant, but this is zero because the speed is zero at t=0. 

When  ; , we are in the case of permanent flow (Torricelli 

formula), we can therefore write: 

 

http://ressources.unisciel.fr/mecaflux/co/Chap3_exo3.html
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Exercise 4 (Reaction of a jet) 

Consider a large container, pierced with an orifice from which a horizontal jet escapes. Apply 

the theorem of quantities of movement to the flow tube (the reference surface) limited by the 

free surface of the liquid, the container and the jet up to the contracted section S. 

 

 

Calculate the thrust due to the fluid on the reservoir. 

Appling  Euler's theorem:  

Let's project this relationship onto the coordinate axes: 

On the Ox axis, the weight does not intervene: 

avec   

So: 

         
F is the resultant of the pressure forces exerted from the outside on the surface. Conversely, 

the tank experiences an equal and opposite thrust called jet reaction: 

 And        

We obtain: 

 

 

Exercises related to chapter 3 
Problem 1 

We consider an incompressible fluid of dynamic viscosity μ, of density ρ above a flat plate of 

infinite extent. This plate performs an oscillatory motion in its own plane. Because of the 

viscosity of the fluid, longitudinal oscillations are generated in the fluid above the plate. 
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In this case, the velocity of a point M of the fluid has only one component u along the x axis 

and this component depends only on z and time t (u = u(z,t)) where z is the vertical axis in an 

inertial frame. 

The boundary conditions are as follows: 

for z = 0, u(0,t) = Uexp(iωt) where U is the amplitude of the velocity of the plate and ω the 

pulsation of the oscillations for  

1 - Determine the differential equation obeyed by the speed u(z,t). We will set ν = μ/ρ where ν 

is the kinematic viscosity. 

 

2 - Find the solution to this equation. To do this, we will proceed by the method of separation 

of variables by setting: 

 

U(z,t) = f(t).g(z) 

 

where f(t) is a function depending only on t and g(z) a function depending only on z. 

 

solution  

1 - Determine the differential equation obeyed by the speed u(z,t). 

 

We write the Navier Stokes equation in the present case: 

 𝜌
𝑑𝑉⃗⃗ 

𝑑𝑡
= −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 + 𝜇Δ𝑢 

 

 

After some calculations we obtain: 

𝜌 (
𝜕𝑉⃗ 

𝜕𝑡
+ 𝑉⃗ 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑉⃗ )

𝑑𝑉⃗ 

𝑑𝑡
= −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑃 + 𝜇Δ𝑢 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑥
+
𝜇

𝜌
(
𝜕2𝑢

𝜕𝑥2
+ 
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) 

 

The terms in color are zero: 

 

u only depends on z and t. 

 

The motion is oscillatory along x. 

 

V has no vertical component. 

 

We therefore obtain: 

𝜌(
𝜕𝑢

𝜕𝑡
) =

𝜇

𝜌
(
𝜕2𝑢

𝜕𝑧2
) = 𝜈(

𝜕2𝑢

𝜕𝑧2
)  

 

 

2 2 - Find the solution to this equation 
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We set U(z,t) = f(t).g(z). We can then write our equation: 

Calculate the characteristic distance δ for which the amplitude is damped to 1/e of its value at 

z = 0. 

 

(
𝑖𝜔

2𝜈
)
1/2

= (
𝜔

2𝜈
)

1
2
exp (𝑖

𝜋

2𝜈
)

1
2
(1 + i) 

We then obtain: 

 

𝑢(𝑧, 𝑡) =  𝑈𝑒𝑥𝑝 (−(
𝜔

2𝜈
)
1/2

𝑧 + 𝑖(𝜔𝑡 − 𝑧 ((
𝜔

2𝜈
)
1/2

)) 

We therefore have an oscillatory movement of the fluid above the plate (damped with the 

distance from the plate). 

We verify that for  

𝛿 = (
2𝜈

𝜔
)
1/2

 

, the amplitude is damped to its value at z=0. 

3/ Calculate the ratio δ/L. 

𝛿

𝐿
= [(

2𝜈

𝜔
)(

𝜔2

4𝑈2
)]

1/2

= (
𝜈

𝑢 . 𝐿
)
1/2

= 𝑅𝑒−1/2 

4/ 4 b - What is the meaning of this report? 

 
𝛿

𝐿
=

1

√𝑅𝑒
, The effect of viscosity is limited to a layer of relative thickness inversely 

proportional to the square root of R. 

Exercises related to chapter 4 
 

Exercice 1 

Are low-speed, small-scale air and water boundary layers really thin? Consider flow at U = 

0.305m/s past a flat plate 0.305m long. Compute the boundary layer thickness at the trailing 

edge for (a)air and(b) water at 293k. 𝜈𝑎𝑖𝑟 =  1.5  10
−5𝑚2/𝑠 𝜈𝑤𝑎𝑡𝑒𝑟 = 1.003 10

−7𝑚2/𝑠  

Solution 

Part (a)  

The trailing-edge Reynolds number thus is:𝑅𝑒𝐿 =
𝑈 𝐿

𝜈
=
0.305×0.305

0.15  10−5
= 6200 

Since this is less than 10 6, the flow is presumed laminar, and since it is greater than 2500, the 

boundary layer is reasonably thin. the predicted laminar thickness is: 
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𝛿

𝑥
=

5

√6200
= 0.0634 

At 𝑥 = 0.305𝑚 →          𝛿 = 0.0634 × 0.305 = 0,0193𝑚 

Part (b)  

 

The trailing-edge Reynolds number thus is:𝑅𝑒𝐿 =
𝑈 𝐿

𝜈
=
0.305×0.305

1.003 10−7
= 92600 

the boundary layer is reasonably thin. the predicted laminar thickness is: 

𝛿

𝑥
=

5

√92600
= 0.0164 

This again satisfies the laminar and thinness conditions. The boundary layer thickness is 

At 𝑥 = 0.305𝑚 →          𝛿 = 0.0164 × 0.305 = 0,00508𝑚 = 5.08𝑚𝑚 

 Exercice 2 

A long, thin flat plate is placed parallel to a 0.01524 m/s stream of water at 293k. At what 

distance x from the leading edge will the boundary layer thickness be 0.0254m? 

Property values : 𝜈𝑤𝑎𝑡𝑒𝑟 = 1.003 10
−7𝑚2/𝑠 

Solution 

Assumptions: Flat-plate flow, with applying in their appropriate ranges. 

Approach: Guess laminar flow first. If contradictory, try turbulent flow 

1) try laminar flowThis is impossible, since laminar boundary layer flow only persists 

up to about 10 6 (or, with special care to avoid disturbances, up to 3 × 10 6 ). Solution 

step 2: Try turbulent flow 

 

Check Rex = (20 ft/s)(5.17 ft)/(1.082E-5 ft 2 /s) = 9.6E6 > 10 6 . OK, turbulent flow. 

Comments: The flow is turbulent, and the inherent ambiguity of the theory is resolved. 
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Exercises related to chapter 6 
Exercise 01: 

Oil with an absolute viscosity of 0.101 Pa.s and a density of 0.850 flows through 3000 m of 

cast iron pipe with a diameter of 300 mm at a rate of 44.4 l/s. 

What is the pressure loss in the pipe? 

Solution 

 

𝜈 =
𝑄𝑣

𝜋 𝑟2
= 0.628𝑚/𝑠  𝑅𝑒 =

𝑣𝜌 𝐷

𝜇
= 1585 < 2000 

 

Which means that the flow is laminar. 

𝜆 =
64

𝑅𝑒
= 0.0404 𝑎𝑛𝑑  𝑡ℎ𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑙𝑜𝑠𝑠𝑒 𝑖𝑠 𝜆

𝐿

𝐷
 
𝜌𝑣2 

2
= 8.14𝑚 

Exercice 2 

Calculate the pressure loss for 305 m of new cast iron pipe, without 

coating, with an internal diameter of 305 mm, when: 

a) water at 15.6 °C flows at 1.525 m/s 

b) fuel oil at 15.6 °C flows at the same speed 

Solution 
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When using the Moody diagram, one must first evaluate the relative roughness and then 

calculate the Reynolds number. 

a) Pressure loss for water
𝜀

𝐷
=
0.244

305
= 0.0008 

 

𝑅𝑒 =
𝑉 𝐷

𝜈
=
0.305 × 1.525

1.13 10−6
= 411000 ∶ 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 

According to the Moody diagram: 

𝜀

𝐷
= 0.0008 𝑎𝑛𝑑 𝑅𝑒 = 411000 → 𝜆 = 0.0194 

The pressure loss is :Δ𝐻 = 𝜆
𝐿

𝐷
 
𝜌𝑣2 

2
= 0.0194.

305

0.305
.
1.5253

2 .9.81
= 2.3𝑚 

b)Pressure loss for fuel 

Pressure loss for water
𝜀

𝐷
=
0.244

305
= 0.0008 

𝑅𝑒 =
𝑉 𝐷

𝜈
=
0.305 × 1.525

4.41 10−6
= 105000 ∶ 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 

According to the Moody diagram: 

𝜀

𝐷
= 0.0008 𝑎𝑛𝑑 𝑅𝑒 = 411000 → 𝜆 = 0.0213 

The pressure loss is :Δ𝐻 = 𝜆
𝐿

𝐷
 
𝜌𝑣2 

2
= 2.53𝑚 

 

References  

[1] White, F. M., & Xue, H. (2003). Fluid mechanics (Vol. 3). New York: McGraw-hill. 

[2] Fischer, H. B. (1972). Mécanique des Fluides. Volume III. By EA BRUN, A. 

MARTINOT-LAGARDE and J. MATHIEU. Dunod, 1970. 396 pp. 84F. Journal of 

Fluid Mechanics, 54(4), 763-764. 

[3] Adil Ridha, (2009),Dynamique des Fluides Réels, UFR des Sciences, Universit´e de 

Caen 

https://docplayer.fr/30136282-Dynamique-des-fluides-reels-m1-mathematiques-et-

applications-specialite-mecanique-ebauche-de-cours-en-train-d-elaboration-

completion.html 

 

https://docplayer.fr/30136282-Dynamique-des-fluides-reels-m1-mathematiques-et-applications-specialite-mecanique-ebauche-de-cours-en-train-d-elaboration-completion.html
https://docplayer.fr/30136282-Dynamique-des-fluides-reels-m1-mathematiques-et-applications-specialite-mecanique-ebauche-de-cours-en-train-d-elaboration-completion.html
https://docplayer.fr/30136282-Dynamique-des-fluides-reels-m1-mathematiques-et-applications-specialite-mecanique-ebauche-de-cours-en-train-d-elaboration-completion.html

