Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

ACWB: Artificial Cleaning Worker Bees Algorithm for Honey DNA Sequences Classification

Auteurs: » Menad Hanane
» BEN-NAOUM Farah
» Abdelmalek Amine
Type : Conférence Internationale
Nom de la conférence : Third International Conference on Multimedia Information Processing CITIM 2018
Lieu : Mascara Pays: Algérie
Lien : » https://scholar.google.com/citations?view_op=view_citation&hl=fr&user=YcO4mUoAAAAJ&citation_for_view=YcO4mUoAAAAJ:J_g5lzvAfSwC
Publié le : 01-10-2018

Honey is a natural product that has accompaniedman of the highest antiquity. This precious elixir is elaborated bybees api mellifera from the flowers nectar as well as the honey-dew. Melissopalynology studies honey and its pollen contents byanalyzing the pollen of a honey’s sample, this analysis has a bigimportance for the control of honey quality. Nowadays, develop-ing an automatic classification system for pollen identification,presents a challenge that needs powerful techniques. This paperpresents a new supervised approach for classification of pollengrain DNA sequence, inspired from cleaning tasks in social liveof bees. Experiments were applied on pollen DNA sequences todemonstrate the effectiveness of the proposed approach.Index Terms—supervised classification, Meta-Heuristic, SocialBees, Bio-Inspired, Data mining, DNA sequences classification,Melissopalynology, Honey Pollen Classification.

Tous droits réservés - © 2019 EEDIS Laboratory