Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Algorithmic height compression of unordered trees

Auteurs: » BEN-NAOUM Farah
» Christophe GODIN
Type : Revue Internationale
Nom du journal : Journal of Theoretical Biology ISSN: 0022-5193
Volume : 389 Issue: 4 Pages: 237–252
Lien : » https://www.sciencedirect.com/science/article/abs/pii/S0022519315005299
Publié le : 21-01-2016

Abstract:

By nature, tree structures frequently present similarities between their sub-parts. Making use of this redundancy, different types of tree compression techniques have been designed in the literature to reduce the complexity of tree structures. A popular and efficient way to compress a tree consists of merging its isomorphic subtrees, which produces a directed acyclic graph (DAG) equivalent to the original tree. An important property of this method is that the compressed structure (i.e. the DAG), has the same height as the original tree, thus limiting partially the possibility of compression. In this paper we address the problem of further compressing this DAG in height. The difficulty is that compression must be carried out on substructures that are not exactly isomorphic as they are strictly nested within each-other. We thus introduced a notion of quasi-isomorphism between subtrees, that makes it possible to define similar patterns along any given path in a tree. We then proposed an algorithm to detect these patterns and to merge them, thus leading to compressed structures corresponding to DAGs augmented with return edges. In this way, redundant information is removed from the original tree in both width and height, thus achieving minimal structural compression. The complete compression algorithm is then illustrated on the compression of various plant-like structures.

Tous droits réservés - © 2019 EEDIS Laboratory