Accès chercheur

EEDIS Laboratory

Evolutionary Engineering

and

Distributed Information Systems

Réseaux et Communication

Sécurité et Multimédia

Ingénierie des Connaissances

Data Mining & Web Intelligent

Interopérabilité des Systèmes d’information
& Bases de données

Développement Orienté Service

Toward Mitigating Tourists' Indifference in POI recommendation systems using MAS

Auteurs: » MAGHNI SENDID ZOULIKHA
» SLAMA Zohra
» DENNOUNI Nassim
Type : Conférence Nationale
Nom de la conférence : N ational C onference on A rtificial I ntelligence and its A pplications , NCAIA’2023
Lieu : TLEMCEN Pays: ALGERIA
Lien : » N ational C onference on A rtificial I ntelligence and its A pplications , NCAIA’2023 1 People's Democratic Republic of Algeria M i n i s t r y o f H i g h e r E d u ca t i o n a n d S ci
Publié le : 17-12-2023

POI recommendation is one of the artificial
intelligence techniques used to personalize a user's experience in
the field of smart tourism. However, this technique suffers from
the problem of sparse data due to the indifference of the ratings
of the places visited by the user. To mitigate this problem, we
propose in this work a Multi-agent System for Reconciling POI
Recommendation Algorithms (MSRPRA) using three types of
POI recommendation algorithm that exploit user ratings, checkins
during visits and explicitly declared trust relationships
between users. Additionally, a voting system is employed to
merge the results of these three algorithms.

Tous droits réservés - © 2019 EEDIS Laboratory